Walmsley R: The development and growth of the intervertebral disc. Edinb Med J. 1953, 60 (8): 341-364.
CAS
PubMed
Google Scholar
Horwitz T: The Human Notochord: A Study of its Development and Regression, Variations, and Pathologic Derivative, Chordoma. 1977, Indianapolis: Horwitz
Google Scholar
Hunter CJ, Matyas JR, Duncan NA: Cytomorphology of notochordal and chondrocytic cells from the nucleus pulposus: a species comparison. J Anat. 2004, 205 (5): 357-362. 10.1111/j.0021-8782.2004.00352.x.
Article
PubMed
PubMed Central
Google Scholar
Doskocil M, Valouch P, Pazderka V: On vertebral body growth. Funct Dev Morphol. 1993, 3 (3): 149-155.
CAS
PubMed
Google Scholar
Miyazaki T, Kobayashi S, Takeno K, Meir A, Urban J, Baba H: A phenotypic comparison of proteoglycan production of intervertebral disc cells isolated from rats, rabbits, and bovine tails; which animal model is most suitable to study tissue engineering and biological repair of human disc disorders?. Tissue Eng Part A. 2009, 15 (12): 3835-3846. 10.1089/ten.tea.2009.0250.
Article
CAS
PubMed
Google Scholar
Chen J, Yan W, Setton LA: Molecular phenotypes of notochordal cells purified from immature nucleus pulposus. Eur Spine J. 2006, 15 (Suppl 3): S303-S311.
Article
PubMed
Google Scholar
Hunter CJ, Matyas JR, Duncan NA: The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering. Tissue Eng. 2003, 9 (4): 667-677. 10.1089/107632703768247368.
Article
CAS
PubMed
Google Scholar
Shapiro IM, Risbud MV: Transcriptional profiling of the nucleus pulposus: say yes to notochord. Arthritis Res Ther. 2010, 12 (3): 117-10.1186/ar3003.
Article
PubMed
PubMed Central
Google Scholar
Risbud MV, Shapiro IM: Notochordal cells in the adult intervertebral disc: new perspective on an old question. Crit Rev Eukaryot Gene Expr. 2011, 21 (1): 29-41. 10.1615/CritRevEukarGeneExpr.v21.i1.30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minogue BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA: Transcriptional profiling of bovine intervertebral disc cells: implications for identification of normal and degenerate human intervertebral disc cell phenotypes. Arthritis Res Ther. 2010, 12 (1): R22-10.1186/ar2929.
Article
PubMed
PubMed Central
Google Scholar
Sakai D, Nakai T, Mochida J, Alini M, Grad S: Differential phenotype of intervertebral disc cells: microarray and immunohistochemical analysis of canine nucleus pulposus and anulus fibrosus. Spine. 2009, 34 (14): 1448-1456. 10.1097/BRS.0b013e3181a55705.
Article
PubMed
Google Scholar
Erwin WM: The enigma that is the nucleus pulposus cell: the search goes on. Arthritis Res Ther. 2010, 12 (3): 118-10.1186/ar3001.
Article
PubMed
PubMed Central
Google Scholar
Aguiar DJ, Johnson SL, Oegema TR: Notochordal cells interact with nucleus pulposus cells: regulation of proteoglycan synthesis. Exp Cell Res. 1999, 246 (1): 129-137. 10.1006/excr.1998.4287.
Article
CAS
PubMed
Google Scholar
Boyd LM, Chen J, Kraus VB, Setton LA: Conditioned medium differentially regulates matrix protein gene expression in cells of the intervertebral disc. Spine. 2004, 29 (20): 2217-2222. 10.1097/01.brs.0000142747.90488.1d.
Article
PubMed
Google Scholar
McCann MR, Tamplin OJ, Rossant J, Séguin CA: Tracing notochord-derived cells using a Noto-cre mouse: implications for intervertebral disc development. Dis Model Mech. 2012, 5 (1): 73-82. 10.1242/dmm.008128.
Article
CAS
PubMed
Google Scholar
Chen J, Lee EJ, Jing L, Christoforou N, Leong KW, Setton LA: Differentiation of mouse induced pluripotent stem cells (iPSCs) into nucleus pulposus-like cells in vitro. PLoS One. 2013, 8 (9): e75548-10.1371/journal.pone.0075548.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi JJ, Alkharouf NW, Schneider KT, Matthews BF, Frederick RD: Expression patterns in soybean resistant to Phakopsora pachyrhizi reveal the importance of peroxidases and lipoxygenases. Funct Integr Genomics. 2008, 8 (4): 341-359. 10.1007/s10142-008-0080-0.
Article
CAS
PubMed
Google Scholar
Korecki CL, Taboas JM, Tuan RS, Iatridis JC: Notochordal cell conditioned medium stimulates mesenchymal stem cell differentiation toward a young nucleus pulposus phenotype. Stem Cell Res Ther. 2010, 1 (2): 18-10.1186/scrt18.
Article
PubMed
PubMed Central
Google Scholar
Erwin WM, Inman RD: Notochord cells regulate intervertebral disc chondrocyte proteoglycan production and cell proliferation. Spine. 2006, 31 (10): 1094-1099. 10.1097/01.brs.0000216593.97157.dd.
Article
PubMed
Google Scholar
Erwin WM, Las Heras F, Islam D, Fehlings MG, Inman RD: The regenerative capacity of the notochordal cell: tissue constructs generated in vitro under hypoxic conditions. J Neurosurg Spine. 2009, 10 (6): 513-521. 10.3171/2009.2.SPINE08578.
Article
PubMed
Google Scholar
Purmessur D, Schek RM, Abbott RD, Ballif BA, Godburn KE, Iatridis JC: Notochordal conditioned media from tissue increases proteoglycan accumulation and promotes a healthy nucleus pulposus phenotype in human mesenchymal stem cells. Arthritis Res Ther. 2011, 13 (3): R81-10.1186/ar3344.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abbott RD, Purmessur D, Monsey RD, Iatridis JC: Regenerative potential of TGFβ3 + Dex and notochordal cell conditioned media on degenerated human intervertebral disc cells. J Orthop Res. 2012, 30 (3): 482-488. 10.1002/jor.21534.
Article
CAS
PubMed
Google Scholar
Gantenbein-Ritter B, Chan SC: The evolutionary importance of cell ratio between notochordal and nucleus pulposus cells: an experimental 3-D co-culture study. Eur Spine J. 2011, 21 (Suppl 6): 819-825.
PubMed Central
Google Scholar
Erwin WM, Ashman K, O’Donnel P, Inman RD: Nucleus pulposus notochord cells secrete connective tissue growth factor and up-regulate proteoglycan expression by intervertebral disc chondrocytes. Arthritis Rheum. 2006, 54 (12): 3859-3867. 10.1002/art.22258.
Article
CAS
PubMed
Google Scholar
Erwin WM, Islam D, Inman RD, Fehlings MG, Tsui FW: Notochordal cells protect nucleus pulposus cells from degradation and apoptosis: implications for the mechanisms of intervertebral disc degeneration. Arthritis Res Ther. 2011, 13 (6): R215-10.1186/ar3548.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rastogi A, Thakore P, Leung A, Benavides M, Machado M, Morschauser MA, Hsieh AH: Environmental regulation of notochordal gene expression in nucleus pulposus cells. J Cell Physiol. 2009, 220 (3): 698-705. 10.1002/jcp.21816.
Article
CAS
PubMed
Google Scholar
Potier E, Ito K: Using notochordal cells of developmental origin to stimulate nucleus pulposus cells and bone marrow stromal cells for intervertebral disc regeneration. Eur Spine J. 2013, 23 (3): 679-688. epub ahead of print
Article
PubMed
PubMed Central
Google Scholar
Guehring T, Wilde G, Sumner M, Grünhagen T, Karney GB, Tirlapur UK, Urban JP: Notochordal intervertebral disc cells: sensitivity to nutrient deprivation. Arthritis Rheum. 2009, 60 (4): 1026-1034. 10.1002/art.24407.
Article
PubMed
Google Scholar
Guehring T, Nerlich A, Kroeber M, Richter W, Omlor GW: Sensitivity of notochordal disc cells to mechanical loading: an experimental animal study. Eur Spine J. 2010, 19 (1): 113-121. 10.1007/s00586-009-1217-0.
Article
PubMed
Google Scholar
Purmessur D, Cornejo MC, Cho SK, Hecht AC, Iatridis JC: Notochordal cell-derived therapeutic strategies for discogenic back pain. Global Spine J. 2013, 3 (3): 201-218. 10.1055/s-0033-1350053.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mwale F, Roughley P, Antoniou J: Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage: a requisite for tissue engineering of intervertebral disc. Eur Cell Mater. 2004, 8: 58-63. discussion 63-4
CAS
PubMed
Google Scholar
Clouet J, Grimandi G, Pot-Vaucel M, Masson M, Fellah HB, Guigand L, Cherel Y, Bord E, Rannou F, Weiss P, Guicheux J, Vinatier C: Identification of phenotypic discriminating markers for intervertebral disc cells and articular chondrocytes. Rheumatology (Oxford). 2009, 48 (11): 1447-1450. 10.1093/rheumatology/kep262.
Article
CAS
Google Scholar
Cappello R, Bird JL, Pfeiffer D, Bayliss MT, Dudhia J: Notochordal cell produce and assemble extracellular matrix in a distinct manner, which may be responsible for the maintenance of healthy nucleus pulposus. Spine. 2006, 31 (8): 873-882. 10.1097/01.brs.0000209302.00820.fd. discussion 883
Article
PubMed
Google Scholar
Maldonado BA, Oegema TR: Initial characterization of the metabolism of intervertebral disc cells encapsulated in microspheres. J Orthop Res. 1992, 10 (5): 677-690. 10.1002/jor.1100100510.
Article
CAS
PubMed
Google Scholar
Ahmed SA, Gogal RM, Walsh JE: A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. J Immunol Methods. 1994, 170 (2): 211-224. 10.1016/0022-1759(94)90396-4.
Article
CAS
PubMed
Google Scholar
Enobakhare BO, Bader DL, Lee DA: Quantification of sulfated glycosaminoglycans in chondrocyte/alginate cultures, by use of 1,9-dimethylmethylene blue. Anal Biochem. 1996, 243 (1): 189-191. 10.1006/abio.1996.0502.
Article
CAS
PubMed
Google Scholar
Farndale RW, Buttle DJ, Barrett AJ: Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta. 1986, 883 (2): 173-177. 10.1016/0304-4165(86)90306-5.
Article
CAS
PubMed
Google Scholar
Lee CR, Grad S, Maclean JJ, Iatridis JC, Alini M: Effect of mechanical loading on mRNA levels of common endogenous controls in articular chondrocytes and intervertebral disk. Anal Biochem. 2005, 341 (2): 372-375. 10.1016/j.ab.2004.10.005.
Article
CAS
PubMed
Google Scholar
Marino JH, Cook P, Miller KS: Accurate and statistically verified quantification of relative mRNA abundances using SYBR Green I and real-time RT-PCR. J Immunol Methods. 2003, 283 (1–2): 291-306.
Article
CAS
PubMed
Google Scholar
Schmittgen TD, Zakrajsek BA: Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods. 2000, 46 (1–2): 69-81.
Article
CAS
PubMed
Google Scholar
Fujita N, Miyamoto T, Imai J, Hosogane N, Suzuki T, Yagi M, Morita K, Ninomiya K, Miyamoto K, Takaishi H, Matsumoto M, Morioka H, Yabe H, Chiba K, Watanabe S, Toyama Y, Suda T: CD24 is expressed specifically in the nucleus pulposus of intervertebral discs. Biochem Biophys Res Commun. 2005, 338 (4): 1890-1896. 10.1016/j.bbrc.2005.10.166.
Article
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25 (4): 402-408. 10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar
Heller M, Schlappritzi E, Stalder D, Nuoffer JM, Haeberli A: Compositional protein analysis of high density lipoproteins in hypercholesterolemia by shotgun LC-MS/MS and probabilistic peptide scoring. Mol Cell Proteomics. 2007, 6 (6): 1059-1072. 10.1074/mcp.M600326-MCP200.
Article
CAS
PubMed
Google Scholar
Hoopmann MR, Finney GL, MacCoss MJ: High-speed data reduction, feature detection, and MS/MS spectrum quality assessment of shotgun proteomics data sets using high-resolution mass spectrometry. Anal Chem. 2007, 79 (15): 5620-5632. 10.1021/ac0700833.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bézier A, Annaheim M, Herbinière J, Wetterwald C, Gyapay G, Bernard-Samain S, Wincker P, Roditi I, Heller M, Belghazi M, Pfister-Wilhem R, Periquet G, Dupuy C, Huguet E, Volkoff AN, Lanzrein B, Drezen JM: Polydnaviruses of braconid wasps derive from an ancestral nudivirus. Science. 2009, 323 (5916): 926-930. 10.1126/science.1166788.
Article
PubMed
Google Scholar
Al Kaabi A, Traupe T, Stutz M, Buchs N, Heller M: Cause or effect of arteriogenesis: compositional alterations of microparticles from CAD patients undergoing external counterpulsation therapy. PLoS One. 2012, 7 (10): e46822-10.1371/journal.pone.0046822.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guehring T, Urban JP, Cui Z, Tirlapur UK: Noninvasive 3D vital imaging and characterization of notochordal cells of the intervertebral disc by femtosecond near-infrared two-photon laser scanning microscopy and spatial-volume rendering. Microsc Res Tech. 2008, 71 (4): 298-304. 10.1002/jemt.20557.
Article
PubMed
Google Scholar
Kim JH, Deasy BM, Seo HY, Studer RK, Vo NV, Georgescu HI, Sowa GA, Kang JD: Differentiation of intervertebral notochordal cells through live automated cell imaging system in vitro. Spine. 2009, 34 (23): 2486-2493. 10.1097/BRS.0b013e3181b26ed1.
Article
PubMed
Google Scholar
Gilson A, Dreger M, Urban JP: Differential expression levels of cytokeratin 8 in cells of the bovine nucleus pulposus complicates the search for specific intervertebral disc cell markers. Arthritis Res Ther. 2010, 12 (1): R24-10.1186/ar2931.
Article
PubMed
PubMed Central
Google Scholar
Hunter CJ, Bianchi S, Cheng P, Muldrew K: Osmoregulatory function of large vacuoles found in notochordal cells of the intervertebral disc running title: an osmoregulatory vacuole. Mol Cell Biomech. 2007, 4 (4): 227-237.
PubMed
PubMed Central
Google Scholar
Spillekom S, Smolders LA, Grinwis GC, Arkesteijn IT, Ito K, Meij BP, Tryfonidou MA: Increased osmolarity and cell clustering preserve canine notochordal cell phenotype in culture. Tissue Eng Part C Methods. 2014, 20 (8): 652-662. 10.1089/ten.tec.2013.0479.
Article
CAS
PubMed
Google Scholar
Risbud MV, Schaer TP, Shapiro IM: Toward an understanding of the role of notochordal cells in the adult intervertebral disc: From discord to accord. Dev Dyn. 2010, 239: 2141-2148. 10.1002/dvdy.22350.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiler C, Nerlich AG, Schaaf R, Bachmeier BE, Wuertz K, Boos N: Immunohistochemical identification of notochordal markers in cells in the aging human lumbar intervertebral disc. Eur Spine J. 2010, 19 (10): 1761-1770. 10.1007/s00586-010-1392-z.
Article
PubMed
PubMed Central
Google Scholar
Oguz E, Tsai TT, Di Martino A, Guttapalli A, Albert TJ, Shapiro IM, Risbud MV: Galectin-3 expression in the intervertebral disc: a useful marker of the notochord phenotype?. Spine. 2007, 32 (1): 9-16. 10.1097/01.brs.0000250302.74574.98.
Article
PubMed
Google Scholar
Sun Z, Wang HQ, Liu ZH, Chang L, Chen YF, Zhang YZ, Zhang WL, Gao Y, Wan ZY, Che L, Liu X, Samartzis D, Luo ZJ: Down-Regulated CK8 expression in human intervertebral disc degeneration. Int J Med Sci. 2013, 10 (8): 948-956. 10.7150/ijms.5642.
Article
PubMed
PubMed Central
Google Scholar
Sakai D, Nakamura Y, Nakai T, Mishima T, Kato S, Grad S, Alini M, Risbud MV, Chan D, Cheah KS, Yamamura K, Masuda K, Okano H, Ando K, Mochida J: Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc. Nat Commun. 2012, 3: 1264-
Article
PubMed
PubMed Central
Google Scholar
Mwale F, Ciobanu I, Giannitsios D, Roughley P, Steffen T, Antoniou J: Effect of oxygen levels on proteoglycan synthesis by intervertebral disc cells. Spine. 2011, 36 (2): E131-E138. 10.1097/BRS.0b013e3181d52b9e.
Article
PubMed
Google Scholar
Park EY, Park JB: Dose- and time-dependent effect of high glucose concentration on viability of notochordal cells and expression of matrix degrading and fibrotic enzymes. Int Orthop. 2013, 37 (6): 1179-1186. 10.1007/s00264-013-1836-2.
Article
PubMed
PubMed Central
Google Scholar
Grau S, Richards PJ, Kerr B, Hughes C, Caterson B, Williams AS, Junker U, Jones SA, Clausen T, Ehrmann M: The role of human HtrA1 in arthritic disease. J Biol Chem. 2006, 281 (10): 6124-6129. 10.1074/jbc.M500361200.
Article
CAS
PubMed
Google Scholar
Tiaden AN, Klawitter M, Lux V, Mirsaidi A, Bahrenberg G, Glanz S, Quero L, Liebscher T, Wuertz K, Ehrmann M, Richards PJ: A detrimental role for human high temperature requirement serine protease A1 (HTRA1) in the pathogenesis of intervertebral disc (IVD) degeneration. J Biol Chem. 2012, 287 (25): 21335-21345. 10.1074/jbc.M112.341032.
Article
CAS
PubMed
PubMed Central
Google Scholar