Yosipovitch G, Yosipovitch Z, Karp M, Mukamel M. Trigger finger in young patients with insulin dependent diabetes. J Rheumatol 1990;17:951–2.
CAS
PubMed
Google Scholar
Noble J, Heathcote JG, Cohen H. Diabetes mellitus in the aetiology of Dupuytren’s disease. J Bone Joint Surg [Br] 1984;66-B:322–5.
Article
Google Scholar
Pourmemari MH, Shiri R. Diabetes as a risk factor for carpal tunnel syndrome: a systematic review and meta-analysis. Diabet Med 2016;33:10–6.
Article
CAS
PubMed
Google Scholar
Balci N, Balci MK, Tüzüner S. Shoulder adhesive capsulitis and shoulder range of motion in type II diabetes mellitus: association with diabetic complications. J Diabetes Complications 1999;13:135–40.
Article
CAS
PubMed
Google Scholar
Mavrikakis ME, Drimis S, Kontoyannis DA, Rasidakis A, Moulopoulou ES, Kontoyannis S, et al. Calcific shoulder periarthritis (tendinitis) in adult onset diabetes mellitus: a controlled study. Ann Rheum Dis 1989;48:211–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lui PPY. Tendinopathy in diabetes mellitus patients—Epidemiology, pathogenesis, and management. Scand J Med Sci Sports 2017;27:776–87.
Article
CAS
PubMed
Google Scholar
Ranger TA, Wong AM, Cook JL, Gaida JE. Is there an association between tendinopathy and diabetes mellitus? A systematic review with meta-analysis. Br J Sports Med 2016;50:982–9.
Article
PubMed
Google Scholar
Abate M, Salini V, Schiavone C. Achilles tendinopathy in elderly subjects with type II diabetes: the role of sport activities. Aging Clin Exp Res 2016;28:355–8.
Article
PubMed
Google Scholar
Siu KK, Zheng LB, Ko JY, Wang FS, Wang CJ, Wong T, et al. Increased interleukin 1β levels in the subacromial fluid in diabetic patients with rotator cuff lesions compared with nondiabetic patients. J Shoulder Elbow Surg 2013;22:1547–51.
Article
PubMed
Google Scholar
Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 1999;48:1–9.
Article
CAS
PubMed
Google Scholar
Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000;404:787–90.
Article
CAS
PubMed
Google Scholar
Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 2008;57:1446–54.
Article
CAS
PubMed
Google Scholar
Jansen F, Yang X, Franklin BS, Hoelscher M, Schmitz T, Bedorf J, et al. High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation. Cardiovasc Res 2013;98:94–106.
Article
CAS
PubMed
Google Scholar
Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C–dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 2000;49:1939–45.
Article
CAS
PubMed
Google Scholar
Goh SY, Cooper ME. Clinical review: the role of advanced glycation end products in progression and complications of diabetes. J Clin Endocrinol Metab 2008;93:1143–2.
Article
CAS
PubMed
Google Scholar
Yu T, Jhun BS, Yoon Y. High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission. Antioxid Redox Signal 2011;14:425–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manea SA, Constantin A, Manda G, Sasson S, Manea A. Regulation of Nox enzymes expression in vascular pathophysiology: focusing on transcription factors and epigenetic mechanisms. Redox Biol 2015;5:358–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ueda Y, Inui A, Mifune Y, Sakata R, Muto T, Harada Y, et al. The effects of high glucose condition on rat tenocytes in vitro and rat Achilles tendon in vivo. Bone Joint Res 2018;7:362–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kurosawa T, Mifune Y, Inui A, Nishimoto H, Ueda Y, Kataoka T, et al. Evaluation of apocynin in vitro on high glucose-induced oxidative stress on tenocytes. Bone Joint Res 2020;9:23–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Labrie F. DHEA, important source of sex steroids in men and even more in women. Prog Brain Res 2010;182:97–148.
Article
CAS
PubMed
Google Scholar
Jeon S, Hur J, Kim J. DHEA Alleviates Oxidative Stress of Muscle Cells via Activation of Nrf2 Pathway. Appl Biochem Biotechnol 2015;176:22–32.
Article
CAS
PubMed
Google Scholar
Chua CK, Henderson VW, Dennerstein L, Ames D, Szoeke C. Dehydroepiandrosterone sulfate and cognition in midlife, post-menopausal women. Neurobiol Aging 2014;35:1654–5.
Article
CAS
PubMed
Google Scholar
Yoshida S, Aihara K, Azuma H, Uemoto R, Sumitomo-Ueda Y, Yagi S, et al. Dehydroepiandrosterone sulfate is inversely associated with sex-dependent diverse carotid atherosclerosis regardless of endothelial function. Atherosclerosis 2010;212:310–5.
Article
CAS
PubMed
Google Scholar
Aragno M, Mastrocola R, Catalano MG, Brignardello E, Danni O, Boccuzzi G. Oxidative stress impairs skeletal muscle repair in diabetic rats. Diabetes 2004;53:1082–8.
Article
CAS
PubMed
Google Scholar
Brignardello E, Runzo C, Aragno M, Catalano MG, Cassader M, Perin PC, et al.Dehydroepiandrosterone administration counteracts oxidative imbalance and advanced glycation end product formation in type 2 diabetic patients. Diabetes Care 2007;30:2922–7.
Article
CAS
PubMed
Google Scholar
Morales AJ, Haubrich RH, Hwang JY, Asakura H, Yen SS. The effect of six months treatment with a 100 mg daily dose of dehydroepiandrosterone (DHEA) on circulating sex steroids, body composition and muscle strength in age-advanced men and women. Clin Endocrinol (Oxf) 1998;49:421–32.
Article
CAS
Google Scholar
von Mühlen D, Laughlin GA, Kritz-Silverstein D, Bergstrom J, Bettencourt R. Effect of dehydroepiandrosterone supplementation on bone mineral density, bone markers, and body composition in older adults: the DAWN trial. Osteoporos Int 2008;19:699–707.
Article
CAS
Google Scholar
Peixoto C, Grande AJ, Mallmann MB, Nardi AE, Cardoso A, Veras AB. Dehydroepiandrosterone (DHEA) for depression: a systematic review and meta-analysis. CNS Neurol Disord Drug Targets 2018;17:706–11.
Article
CAS
PubMed
Google Scholar
Kiersztan A, Trojan N, Tempes A, Nalepa P, Sitek J, Winiarska K, et al. DHEA supplementation to dexamethasone-treated rabbits alleviates oxidative stress in kidney-cortex and attenuates albuminuria. J Steroid Biochem Mol Biol 2017;174:17–26.
Article
CAS
PubMed
Google Scholar
Tsai WC, Liang FC, Cheng JW, Lin LP, Chang SC, Chen HH, et al. High glucose concentration up-regulates the expression of matrix metalloproteinase-9 and – 13 in tendon cells. BMC Musculoskelet Disord 2013;14:255.
Article
PubMed
PubMed Central
CAS
Google Scholar
Portal-Núñez S, Ardura JA, Lozano D, Martínez de Toda I, De la Fuente M, Herrero-Beaumont G, et al. Parathyroid hormone-related protein exhibits antioxidant features in osteoblastic cells through its N-terminal and osteostatin domains. Bone Joint Res 2018;7:58–68.
Article
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta C(T)) Method. Methods 2001;25:402–8.
Article
CAS
PubMed
Google Scholar
Furman BL. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol 2015;70:1–20.
Article
Google Scholar
Aksoy H, Yapanoglu T, Aksoy Y, Ozbey I, Turhan H, Gursan N. Dehydroepiandrosterone treatment attenuates reperfusion injury after testicular torsion and detorsion in rats. J Pediatr Surg 2007;42:1740–4
Article
PubMed
Google Scholar
Pelissier MA, Trap C, Malewiak MI, Morfin R. Antioxidant effects of dehydroepiandrosterone and 7alpha-hydroxy-dehydroepiandrosterone in the rat colon, intestine and liver. Steroids 2004;69:137–44.
Article
CAS
PubMed
Google Scholar
Duan RS, Link H, Xiao BG. Dehydroepiandrosterone therapy ameliorates experimental autoimmune myasthenia gravis in Lewis rats. J Clin Immunol 2003;23:100–6.
Article
CAS
PubMed
Google Scholar
Jacob MH, Janner Dda R, Araújo AS, Jahn MP, Kucharski LC, Moraes TB, et al. Dehydroepiandrosterone improves hepatic antioxidant reserve and stimulates Akt signaling in young and old rats. J Steroid Biochem Mol Biol 2011;127:331–6.
Article
CAS
PubMed
Google Scholar
Kumar P, Taha A, Sharma D, Kale RK, Baquer NZ. Effect of dehydroepiandrosterone (DHEA) on monoamine oxidase activity, lipid peroxidation and lipofuscin accumulation in aging rat brain regions. Biogerontology 2008;9:235–46.
Article
CAS
PubMed
Google Scholar
Maffulli N, Barrass V, Ewen SW. Light microscopic histology of achilles tendon ruptures. A comparison with unruptured tendons. Am J Sports Med 2000;28:857–63.
Article
CAS
PubMed
Google Scholar
Huang K, Wu LD. Dehydroepiandrosterone: Molecular mechanisms and therapeutic implications in osteoarthritis. J Steroid Biochem Mol Biol 2018;183:27–38.
Article
CAS
PubMed
Google Scholar
.Handala L, Domange B, Ouled-Haddou H, Garçon L, Nguyen-Khac E, Helle F, et al. DHEA prevents ribavirin-induced anemia via inhibition of glucose-6-phosphate dehydrogenase. Antiviral Res 2017;146:153–60.
Article
CAS
PubMed
Google Scholar
Gao J, Sun HY, Zhu ZR, Ding Z, Zhu L. Antioxidant effects of dehydroepiandrosterone are related to up-regulation of thioredoxin in SH-SY5Y cells. Acta Biochim Biophys Sin 2005;37:119–25.
Article
CAS
PubMed
Google Scholar
Liu D, Dillon JS. Dehydroepiandrosterone activates endothelial cell nitric oxidase synthase by a specific plasma membrane receptor coupled to Gαi2, 3. J Biol Chem 2002;277:21379–88
Article
CAS
PubMed
Google Scholar
Liu D, Si H, Reynolds KA, Zhen W, Jia Z, Dillon JS. Dehydroepiandrosterone protects vascular endothelial cells against apoptosis through a Galphai protein-dependent activation of phosphatidylinositol 3-kinase/Akt and regulation of antiapoptotic Bcl-2 expression. Endocrinology 2007;148:3068–76
Article
CAS
PubMed
Google Scholar
Huerta-García E, Ventura-Gallegos JL, Victoriano ME, Montiél-Dávalos A, Tinoco-Jaramillo G, López-Marure R. Dehydroepiandrosterone inhibits the activation and dysfunction of endothelial cells induced by high glucose concentration. Steroids 2012;77:233–40
Article
PubMed
CAS
Google Scholar
Volper BD, Huynh RT, Arthur KA, Noone J, Gordon BD, Zacherle EW, et al. Influence of acute and chronic streptozotocininduced diabetes on the rat tendon extracellular matrix and mechanical properties. Am J Physiol Regul Integr Comp Physiol 2015;309:R1135-43.
Article
PubMed
CAS
Google Scholar
Morita W, Dakin SG, Snelling SJB, Carr AJ. Cytokines in tendon disease: A Systematic Review. Bone Joint Res 2017;6:656–64.
Article
CAS
PubMed
Google Scholar
Amiel D, Frank C, Harwood F, Fronek J, Akeson W. Tendons and ligaments: a morphological and biochemical comparison. J Orthop Res 1984;1:257–65.
Article
CAS
PubMed
Google Scholar
Aimes RT, Quigley JP. Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments. J Biol Chem 1995;270:5872–6.
Article
CAS
PubMed
Google Scholar
Choi HR, Kondo S, Hirose K, Ishiguro N, Hasegawa Y, Iwata H. Expression and enzymatic activity of MMP-2 during healing process of the acute supraspinatus tendon tear in rabbits. J Orthop Res 2002;20:927–33.
Article
CAS
PubMed
Google Scholar
Yao L, Bestwick CS, Bestwick LA, Maffulli N, Aspden RM. Phenotypic drift in human tenocyte culture. Tissue Eng 2006;12:1843–9.
Article
CAS
PubMed
Google Scholar
Harada Y, Kokubu T, Mifune Y, Inui A, Sakata R, Muto T, et al. Dose- and time-dependent effects of triamcinolone acetonide on human rotator cuff-derived cells. Bone Joint Res 2014;3:328–34.
Article
CAS
PubMed
PubMed Central
Google Scholar