Ciechanover A: The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J. 1998, 17: 7151-7160. 10.1093/emboj/17.24.7151.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stadtmueller BM, Hill CP: Proteasome activators. Mol Cell. 2011, 41: 8-19. 10.1016/j.molcel.2010.12.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanaka K, Mizushima T, Saeki Y: The proteasome: molecular machinery and pathophysiological roles. Biol Chem. 2012, 393: 217-234.
Article
CAS
PubMed
Google Scholar
Finley D: Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem. 2009, 78: 477-513. 10.1146/annurev.biochem.78.081507.101607.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sijts EJAM, Kloetzel PM: The role of the proteasome in the generation of MHC class I ligands and immune responses. Cell Mol Life Sci. 2011, 68: 1491-1502. 10.1007/s00018-011-0657-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dahlmann B: Role of proteasomes in disease. BMC Biochem. 2007, 8 (Suppl 1): S3-10.1186/1471-2091-8-S1-S3.
Article
PubMed
PubMed Central
Google Scholar
Krause S, Kuckelkorn U, Dörner T, Burmester G-R, Feist E, Kloetzel P-M: Immunoproteasome subunit LMP2 expression is deregulated in Sjogren’s syndrome but not in other autoimmune disorders. Ann Rheum Dis. 2006, 65: 1021-1027. 10.1136/ard.2005.045930.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martinez-Gamboa L, Lesemann K, Kuckelkorn U, Scheffler S, Ghannam K, Hahne M, Gaber-Elsner T, Egerer K, Naumann L, Buttgereit F, Dörner T, Kloetzel PM, Burmester GR, Faustman DL, Feist E: Gene expression of catalytic proteasome subunits and resistance toward proteasome inhibition of B lymphocytes from patients with primary sjogren syndrome. J Rheumatol. 2013, 40: 663-673. 10.3899/jrheum.120680.
Article
CAS
PubMed
Google Scholar
Egerer K, Kuckelkorn U, Rudolph PE, Rückert JC, Dörner T, Burmester G-R, Kloetzel P-M, Feist E: Circulating proteasomes are markers of cell damage and immunologic activity in autoimmune diseases. J Rheumatol. 2002, 29: 2045-2052.
CAS
PubMed
Google Scholar
Jakob C, Egerer K, Liebisch P, Türkmen S, Zavrski I, Kuckelkorn U, Heider U, Kaiser M, Fleissner C, Sterz J, Kleeberg L, Feist E, Burmester G-R, Kloetzel P-M, Sezer O: Circulating proteasome levels are an independent prognostic factor for survival in multiple myeloma. Blood. 2007, 109: 2100-2105. 10.1182/blood-2006-04-016360.
Article
CAS
PubMed
Google Scholar
Mao I, Liu J, Li X, Luo H: REGgamma, a proteasome activator and beyond?. Cell Mol Life Sci. 2008, 65: 3971-3980. 10.1007/s00018-008-8291-z.
Article
CAS
PubMed
Google Scholar
Li X, Lonard DM, Jung SY, Malovannaya A, Feng Q, Qin J, Tsai SY, Tsai M-J, O’Malley BW: The SRC-3/AIB1 coactivator is degraded in a ubiquitin- and ATP-independent manner by the REGgamma proteasome. Cell. 2006, 124: 381-392. 10.1016/j.cell.2005.11.037.
Article
CAS
PubMed
Google Scholar
Chen X, Barton LF, Chi Y, Clurman BE, Roberts JM: Ubiquitin-independent degradation of cell-cycle inhibitors by the REGgamma proteasome. Mol Cell. 2007, 26: 843-852. 10.1016/j.molcel.2007.05.022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li X, Amazit L, Long W, Lonard DM, Monaco JJ, O’Malley BW: Ubiquitin- and ATP-independent proteolytic turnover of p21 by the REGgamma-proteasome pathway. Mol Cell. 2007, 26: 831-842. 10.1016/j.molcel.2007.05.028.
Article
PubMed
Google Scholar
Suzuki R, Moriishi K, Fukuda K, Shirakura M, Ishii K, Shoji I, Wakita T, Miyamura T, Matsuura Y, Suzuki T: Proteasomal turnover of hepatitis C virus core protein is regulated by two distinct mechanisms: a ubiquitin-dependent mechanism and a ubiquitin-independent but PA28gamma-dependent mechanism. J Virol. 2009, 83: 2389-2392. 10.1128/JVI.01690-08.
Article
CAS
PubMed
Google Scholar
Nie J, Wu M, Wang J, Xing G, He F, Zhang L: REGgamma proteasome mediates degradation of the ubiquitin ligase Smurf1. FEBS Lett. 2010, 584: 3021-3027. 10.1016/j.febslet.2010.05.034.
Article
CAS
PubMed
Google Scholar
Kanai K, Aramata S, Katakami S, Yasuda K, Kataoka K: Proteasome activator PA28γ stimulates degradation of GSK3-phosphorylated insulin transcription activator MAFA. J Mol Endocrinol. 2011, 47: 119-127. 10.1530/JME-11-0044.
Article
CAS
Google Scholar
Zannini L, Lecis D, Buscemi G, Carlessi L, Gasparini P, Fontanella E, Lisanti S, Barton L, Delia D: REGgamma proteasome activator is involved in the maintenance of chromosomal stability. Cell Cycle Georget Tex. 2008, 7: 504-512. 10.4161/cc.7.4.5355.
Article
CAS
Google Scholar
Baldin V, Militello M, Thomas Y, Doucet C, Fic W, Boireau S, Jariel-Encontre I, Piechaczyk M, Bertrand E, Tazi J, Coux O: A novel role for PA28gamma-proteasome in nuclear speckle organization and SR protein trafficking. Mol Biol Cell. 2008, 19: 1706-1716. 10.1091/mbc.E07-07-0637.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anupam R, Datta A, Kesic M, Green-Church K, Shkriabai N, Kvaratskhelia M, Lairmore MD: Human T-lymphotropic virus type 1 p30 interacts with REGgamma and modulates ATM (ataxia telangiectasia mutated) to promote cell survival. J Biol Chem. 2011, 286: 7661-7668. 10.1074/jbc.M110.176354.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ko NL, Taylor JM, Bellon M, Bai XT, Shevtsov SP, Dundr M, Nicot C: PA28γ is a novel corepressor of HTLV-1 replication and controls viral latency. Blood. 2013, 121: 791-800. 10.1182/blood-2012-03-420414.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Zhang R: Proteasome activator PA28 gamma regulates p53 by enhancing its MDM2-mediated degradation. EMBO J. 2008, 27: 852-864. 10.1038/emboj.2008.25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Yu G, Zhao Y, Zhao D, Wang Y, Wang L, Liu J, Li L, Zeng Y, Dang Y, Wang C, Gao G, Long W, Lonard DM, Qiao S, Tsai M-J, Zhang B, Luo H, Li X: REGgamma modulates p53 activity by regulating its cellular localization. J Cell Sci. 2010, 123 (Pt 23): 4076-4084.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roessler M, Rollinger W, Mantovani-Endl L, Hagmann M-L, Palme S, Berndt P, Engel AM, Pfeffer M, Karl J, Bodenmüller H, Rüschoff J, Henkel T, Rohr G, Rossol S, Rösch W, Langen H, Zolg W, Tacke M: Identification of PSME3 as a novel serum tumor marker for colorectal cancer by combining two-dimensional polyacrylamide gel electrophoresis with a strictly mass spectrometry-based approach for data analysis. Mol Cell Proteomics. 2006, 5: 2092-2101. 10.1074/mcp.M600118-MCP200.
Article
CAS
PubMed
Google Scholar
Chen D, Yang X, Huang L, Chi P: The expression and clinical significance of PA28 γ in colorectal cancer. J Investig Med Off Publ Am Fed Clin Res. 2013, 61: 1192-1196.
CAS
Google Scholar
Wang X, Tu S, Tan J, Tian T, Ran L, Rodier J-F, Ren G: REG gamma: a potential marker in breast cancer and effect on cell cycle and proliferation of breast cancer cell. Med Oncol Northwood Lond Engl. 2011, 28: 31-41.
Article
Google Scholar
Li L-P, Cheng W-B, Li H, Li W, Yang H, Wen D-H, Tang Y-D: Expression of proteasome activator REGγ in human laryngeal carcinoma and associations with tumor suppressor proteins. Asian Pac J Cancer Prev. 2012, 13: 2699-2703. 10.7314/APJCP.2012.13.6.2699.
Article
PubMed
Google Scholar
He J, Cui L, Zeng Y, Wang G, Zhou P, Yang Y, Ji L, Zhao Y, Chen J, Wang Z, Shi T, Zhang P, Chen R, Li X: REGγ is associated with multiple oncogenic pathways in human cancers. BMC Cancer. 2012, 12: 75-10.1186/1471-2407-12-75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kondo M, Moriishi K, Wada H, Noda T, Marubashi S, Wakasa K, Matsuura Y, Doki Y, Mori M, Nagano H: Upregulation of nuclear PA28γ expression in cirrhosis and hepatocellular carcinoma. Exp Ther Med. 2012, 3: 379-385.
PubMed
Google Scholar
Okamura T, Taniguchi S-I, Ohkura T, Yoshida A, Shimizu H, Sakai M, Maeta H, Fukui H, Ueta Y, Hisatome I, Shigemasa C: Abnormally high expression of proteasome activator-gamma in thyroid neoplasm. J Clin Endocrinol Metab. 2003, 88: 1374-1383. 10.1210/jc.2002-021413.
Article
CAS
PubMed
Google Scholar
Zhang M, Gan L, Ren GS: REGγ is a strong candidate for the regulation of cell cycle, proliferation and the invasion by poorly differentiated thyroid carcinoma cells. Braz J Med Biol Res Rev Bras Pesqui Médicas E Biológicas Soc Bras Biofísica Al. 2012, 45: 459-465.
CAS
Google Scholar
Tojo T, Kaburaki J, Hayakawa M, Okamoto T, Tomii M, Homma M: Precipitating antibody to a soluble nuclear antigen “Ki” with specificity for systemic lupus erythematosus. Ryūmachi Rheum. 1981, 21 (Suppl): 129-140.
Google Scholar
Yamanaka K, Takasaki Y, Nishida Y, Shimada K, Shibata M, Hashimoto H: Detection and quantification of anti-Ki antibodies by enzyme-linked immunosorbent assay using recombinant Ki antigen. Arthritis Rheum. 1992, 35: 667-671. 10.1002/art.1780350610.
Article
CAS
PubMed
Google Scholar
Cavazzana I, Franceschini F, Vassalini C, Danieli E, Quinzanini M, Airò P, Cattaneo R: Clinical and serological features of 35 patients with anti-Ki autoantibodies. Lupus. 2005, 14: 837-841. 10.1191/0961203305lu2226oa.
Article
CAS
PubMed
Google Scholar
Ahmed H: Principles and Reactions of Protein Extraction, Purification, and Characterization. 2004, Boca Raton: CRC Press
Book
Google Scholar
Rödiger S, Ruhland M, Schmidt C, Schröder C, Grossmann K, Böhm A, Nitschke J, Berger I, Schimke I, Schierack P: Fluorescence dye adsorption assay to quantify carboxyl groups on the surface of poly(methyl methacrylate) microbeads. Anal Chem. 2011, 83: 3379-3385. 10.1021/ac103277s.
Article
PubMed
Google Scholar
Rödiger S, Schierack P, Böhm A, Nitschke J, Berger I, Frömmel U, Schmidt C, Ruhland M, Schimke I, Roggenbuck D, Lehmann W, Schröder C: A highly versatile microscope imaging technology platform for the multiplex real-time detection of biomolecules and autoimmune antibodies. Adv Biochem Eng Biotechnol. 2012, 133: 35-74.
Google Scholar
Rödiger S, Friedrichsmeier T, Kapat P, Michalke M: RKWard: a comprehensive graphical user interface and integrated development environment for statistical analysis with R. J Stat Softw. 2012, 49: 1-34.
Article
Google Scholar
Kohda K, Ishibashi T, Shimbara N, Tanaka K, Matsuda Y, Kasahara M: Characterization of the mouse PA28 activator complex gene family: complete organizations of the three member genes and a physical map of the approximately 150-kb region containing the alpha- and beta-subunit genes. J Immunol Baltim Md 1950. 1998, 160: 4923-4935.
CAS
Google Scholar
Li L, Zhao D, Wei H, Yao L, Dang Y, Amjad A, Xu J, Liu J, Guo L, Li D, Li Z, Zuo D, Zhang Y, Liu J, Huang S, Jia C, Wang L, Wang Y, Xie Y, Luo J, Zhang B, Luo H, Donehower LA, Moses RE, Xiao J, O’Malley BW, Li X: REGγ deficiency promotes premature aging via the casein kinase 1 pathway. Proc Natl Acad Sci. 2013, 110: 11005-10. 10.1073/pnas.1308497110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsushita M, Matsudaira R, Ikeda K, Nawata M, Tamura N, Takasaki Y: Anti-proteasome activator 28alpha is a novel anti-cytoplasmic antibody in patients with systemic lupus erythematosus and Sjögren’s syndrome. Mod Rheumatol Jpn Rheum Assoc. 2009, 19: 622-628. 10.3109/s10165-009-0215-8.
Article
CAS
Google Scholar
Feist E, Kuckelkorn U, Dörner T, Dönitz H, Scheffler S, Hiepe F, Kloetzel PM, Burmester GR: Autoantibodies in primary Sjögren’s syndrome are directed against proteasomal subunits of the alpha and beta type. Arthritis Rheum. 1999, 42: 697-702. 10.1002/1529-0131(199904)42:4<697::AID-ANR12>3.0.CO;2-H.
Article
CAS
PubMed
Google Scholar
Henry L, Lavabre-Bertrand T, Vercambre L, Ramos J, Carillo S, Guiraud I, Pouderoux P, Bismuth M, Valats J-C, Demattei C, Duny Y, Chaze I, Funakoshi N, Bureau JP, Daurès J-P, Blanc P: Plasma proteasome level is a reliable early marker of malignant transformation of liver cirrhosis. Gut. 2009, 58: 833-838. 10.1136/gut.2008.157016.
Article
CAS
PubMed
Google Scholar