Bellantuono I, Aldahmash A, Kassem M. Aging of marrow stromal (skeletal) stem cells and their contribution to age-related bone loss. Biochim Biophys Acta. 2009;1792:364–70.
Article
CAS
Google Scholar
Frost HM. Why should many skeletal scientists and clinicians learn the Utah paradigm of skeletal physiology? J Musculoskelet Neuronal Interact. 2001;2(2):121–30.
CAS
PubMed
Google Scholar
Steiniche T. Bone histomorphometry in the pathophysiological evaluation of primary and secondary osteoporosis and various treatment modalities. APMIS Suppl. 1995;51:1–44.
CAS
PubMed
Google Scholar
Friedenstein AJ, Ivanov-Smolenski AA, Chajlakjan RK, Gorskaya UF, Kuralesova AI, Latzinik NW, et al. Origin of bone marrow stromal mechanocytes in radiochimeras and heterotopic transplants. Exp Hematol. 1978;6:440–4.
CAS
PubMed
Google Scholar
Bjørnerem Å, Wang X, Bui M, Ghasem-Zadeh A, Hopper JL, Zebaze R, et al. Menopause-related appendicular bone loss is mainly cortical and results in increased cortical porosity. J Bone Miner Res. 2018;33(4):598–605. https://doi.org/10.1002/jbmr.3333.
Chan CK, Mason A, Cooper C, Dennison E. Novel advances in the treatment of osteoporosis. Br Med Bull. 2016;119(1):129–42. https://doi.org/10.1093/bmb/ldw033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schweser KM, Crist BD. Osteoporosis: a discussion on the past 5 years. Curr Rev Musculoskelet Med. 2017;10(2):265–74. https://doi.org/10.1007/s12178-017-9410-y.
Article
PubMed
PubMed Central
Google Scholar
Fan YL, Peh WC. Radiology of osteoporosis: old and new findings. Semin Musculoskelet Radiol. 2016;20(03):235–45. https://doi.org/10.1055/s-0036-1592371.
Article
PubMed
Google Scholar
Shetty S, Kapoor N, Bondu JD, Thomas N, Paul TV. Bone turnover markers: emerging tool in the management of osteoporosis. Indian J Endocrinol Metab. 2016;20(6):846–52. https://doi.org/10.4103/2230-8210.192914.
Article
PubMed
PubMed Central
Google Scholar
Eastell R, Hannon RA. Biomarkers of bone health and osteoporosis risk. Proc Nutr Soc. 2008;67(2):157–62. https://doi.org/10.1017/S002966510800699X.
Article
PubMed
Google Scholar
Rabinovich GA, Ilarregui JM. Conveying glycan information into T-cell homeostatic programs: a challenging role for galectin-1 in inflammatory and tumor microenvironments. Immunol Rev. 2009;230(1):144–59. https://doi.org/10.1111/j.1600-065X.2009.00787.x.
Article
CAS
PubMed
Google Scholar
Rubinstein N, Alvarez M, Zwirner NW, Toscano MA, Ilarregui JM, Bravo A, et al. Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; a potential mechanism of tumor-immune privilege. Cancer Cell. 2004;5(3):241–51. https://doi.org/10.1016/S1535-6108(04)00024-8.
Stannard KA, Collins PM, Ito K, Sullivan EM, Scott SA, Gabutero E, et al. Galectin inhibitory disaccharides promote tumour immunity in a breast cancer model. Cancer Lett. 2010;299(2):95–110. https://doi.org/10.1016/j.canlet.2010.08.005.
Rabinovich GA. Galectin-1 as a potential cancer target. Br J Cancer. 2005;92(7):1188–92. https://doi.org/10.1038/sj.bjc.6602493.
Article
CAS
PubMed
PubMed Central
Google Scholar
Camby I, Le Mercier M, Lefranc F, Kiss R. Galectin-1: a small protein with major functions. Glycobiology. 2006;16(11):137R–57R. https://doi.org/10.1093/glycob/cwl025.
Article
CAS
PubMed
Google Scholar
Thijssen VL, Postel R, Brandwijk RJMGE, Dings RPM, Nesmelova I, Satijn S, et al. Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. Proc Natl Acad Sci U S A. 2006;103(43):15975–80. https://doi.org/10.1073/pnas.0603883103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thijssen VL, Barkan B, Shoji H, Aries IM, Mathieu V, Deltour L, et al. Tumor cells secrete galectin-1 to enhance endothelial cell activity. Cancer Res. 2010;70(15):6216–24. https://doi.org/10.1158/0008-5472.CAN-09-4150.
Wu MH, Hong HC, Hong TM, Chiang WF, Jin YT, Chen YL. Targeting galectin-1 in carcinoma-associated fibroblasts inhibits oral squamous cell carcinoma metastasis by downregulating MCP-1/CCL2 expression. Clin Cancer Res. 2011;17(6):1306–16. https://doi.org/10.1158/1078-0432.CCR-10-1824.
Article
CAS
PubMed
Google Scholar
Silva WA, Covas DT, Panepucci RA, Proto-Siqueira R, Siufi JLC, Zanette DL, et al. The profile of gene expression of human marrow mesenchymal stem cells. Stem Cells. 2003;21(6):661–9. https://doi.org/10.1634/stemcells.21-6-661.
Article
CAS
PubMed
Google Scholar
Gieseke F, Böhringer J, Bussolari R, Dominici M, Handgretinger R, Müller I. Human multipotent mesenchymal stromal cells use galectin-1 to inhibit immune effector cells. Blood. 2010;116(19):3770–9. https://doi.org/10.1182/blood-2010-02-270777.
Article
CAS
PubMed
Google Scholar
Reesink HL, Sutton RM, Shurer CR, Peterson RP, Tan JS, Su J, et al. Galectin-1 and galectin-3 expression in equine mesenchymal stromal cells (MSCs), synovial fibroblasts and chondrocytes, and the effect of inflammation on MSC motility. Stem Cell Res Ther. 2017;8(1):243. https://doi.org/10.1186/s13287-017-0691-2.
Toegel S, Weinmann D, André S, Walzer SM, Bilban M, Schmidt S, et al. Galectin-1 couples Glycobiology to inflammation in osteoarthritis through the activation of an NF-κB-regulated gene network. J Immunol. 2016;196(4):1910–21. https://doi.org/10.4049/jimmunol.1501165.
Jing L, So S, Lim SW, Richardson WJ, Fitch RD, Setton LA, et al. Differential expression of galectin-1 and its interactions with cells and laminins in the intervertebral disc. J Orthop Res. 2012;30(12):1923–31. https://doi.org/10.1002/jor.22158.
Zhou Y, Yang Y, Liu Y, Chang H, Liu K, Zhang X, et al. Irp2 Knockout Causes Osteoporosis by Inhibition of Bone Remodeling. Calcif Tissue Int. 2019;104(1):70–8. https://doi.org/10.1007/s00223-018-0469-2.
Wang Y, Han X, Yang Y, Qiao H, Dai K, Fan Q, et al. Functional differences between AMPK α1 and α2 subunits in osteogenesis, osteoblast-associated induction of osteoclastogenesis, and adipogenesis. Sci Rep. 2016;6(1):32771–84. https://doi.org/10.1038/srep32771.
Zhang Y, Ma C, Liu X, Wu Z, Yan P, Ma N, et al. Epigenetic landscape in PPARγ2 in the enhancement of adipogenesis of mouse osteoporotic bone marrow stromal cell. Biochim Biophys Acta. 2015;1852:2504–16.
Fan Q, Tang T, Zhang X, Dai K. The role of CCAAT/enhancer binding protein (C/EBP)-alpha in osteogenesis of C3H10T1/2 cells induced by BMP-2. J Cell Mol Med. 2009;13(8b):2489–505. https://doi.org/10.1111/j.1582-4934.2008.00606.x.
Article
PubMed
Google Scholar
Li X, Zhou Z, Zhang Y, Yang H. IL-6 contributes to the defective Osteogenesis of bone marrow stromal cells from the vertebral body of the glucocorticoid-induced osteoporotic mouse. PLoS One. 2016;11(4):e0154677. https://doi.org/10.1371/journal.pone.0154677.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu X, Cao L, Li F, Ma C, Liu G, Wang Q. Interleukin-6 from subchondral bone mesenchymal stem cells contributes to the pathological phenotypes of experimental osteoarthritis. Am J Transl Res. 2018;10(4):1143–54.
CAS
PubMed
PubMed Central
Google Scholar
Jiang Y, Zhang Y, Jin M, Gu Z, Pei Y, Meng P. Aged-related changes in body composition and association between body composition with bone mass density by body mass index in Chinese Han men over 50-year-old. PLoS One. 2015;10(6):e0130400. https://doi.org/10.1371/journal.pone.0130400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest. 1998;102(2):274–82. https://doi.org/10.1172/JCI2799.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guerrini MM, Takayanagi H. The immune system, bone and RANKL. Arch Biochem Biophys. 2014;561:118–23. https://doi.org/10.1016/j.abb.2014.06.003.
Article
CAS
PubMed
Google Scholar
Zupan J, Jeras M, Marc J. Osteoimmunology and the influence of pro-inflammatory cytokines on osteoclasts. Biochem Med. 2013;23(1):43–63. https://doi.org/10.11613/bm.2013.007.
Article
CAS
Google Scholar
Andersen MN, Ludvigsen M, Abildgaard N, Petruskevicius I, Hjortebjerg R, Bjerre M, et al. Serum galectin-1 in patients with multiple myeloma: associations with survival, angiogenesis, and biomarkers of macrophage activation. Onco Targets Ther. 2017;10:1977–82. https://doi.org/10.2147/OTT.S124321.
Machado I, Guerrero JAL, Navarro S, Mayordomo E, Scotlandi K, Picci P, et al. Galectin-1 (GAL-1) expression is a useful tool to differentiate between small cell osteosarcoma and Ewing sarcoma. Virchows Arch. 2013;462(6):665–71. https://doi.org/10.1007/s00428-013-1423-3.
Article
CAS
PubMed
Google Scholar
Andersen H, Jensen ON, Moiseeva EP, Eriksen EF. A proteome study of secreted prostatic factors affecting osteoblastic activity: galectin-1 is involved in differentiation of human bone marrow stromal cells. J Bone Miner Res. 2003;18(2):195–203. https://doi.org/10.1359/jbmr.2003.18.2.195.
Article
CAS
PubMed
Google Scholar
Muller J, Duray E, Lejeune M, Dubois S, Plougonven E, Léonard A, et al. Loss of stromal Galectin-1 enhances multiple myeloma development: emphasis on a role in osteoclasts. Cancers. 2019;11(2):261–74. https://doi.org/10.3390/cancers11020261.
Zhang W, Ou G, Hamrick M, Hill W, Borke J, Wenger K, et al. Age-related changes in the osteogenic differentiation potential of mouse bone marrow stromal cells. J Bone Miner Res. 2008;23(7):1118–28. https://doi.org/10.1359/jbmr.080304.
Tencerova M, Kassem M. The bone marrow-derived stromal cells: commitment and regulation of Adipogenesis. Front Endocrinol. 2016;7:127–38.
Article
Google Scholar
Yu B, Zhao X, Yang C, Crane J, Xian L, Lu W, et al. Parathyroid hormone induces differentiation of mesenchymal stromal/stem cells by enhancing bone morphogenetic protein signaling. J Bone Miner Res. 2012;27(9):2001–14. https://doi.org/10.1002/jbmr.1663.
Guntur AR, Rosen CJ. IGF-1 regulation of key signaling pathways in bone. Bonekey Rep. 2013;2:437–42.
Article
Google Scholar
Kadri T, Lataillade JJ, Doucet C, Marie A, Ernou I, Bourin P. Proteomic study of Galectin-1 expression in human mesenchymal stem cells. Stem Cells Dev. 2005;14(2):204–12. https://doi.org/10.1089/scd.2005.14.204.
Article
CAS
PubMed
Google Scholar
Siegel G, Kluba T, Hermanutz-Klein U, Bieback K, Northoff H, Schäfer R. Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells. BMC Med. 2013;11(1):146–65. https://doi.org/10.1186/1741-7015-11-146.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muschler GF, Boehm C, Easley K. Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume. J Bone Joint Surg Am. 1997;79(11):1699–709. https://doi.org/10.2106/00004623-199711000-00012.
Article
CAS
PubMed
Google Scholar
Cuthbert R, Boxall SA, Tan HB, Giannoudis PV, McGonagle D, Jones E. Single-platform quality control assay to quantify multipotential stromal cells in bone marrow aspirates prior to bulk manufacture or direct therapeutic use. Cytotherapy. 2012;14(4):431–40. https://doi.org/10.3109/14653249.2011.651533.
Article
CAS
PubMed
Google Scholar
Ertl RP, Chen J, Astle CM, Duffy TM, Harrison DE. Effects of dietary restriction on hematopoietic stem-cell aging are genetically regulated. Blood. 2008;111(3):1709–16. https://doi.org/10.1182/blood-2007-01-069807.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beamer WG, Donahue LR, Rosen CJ, Baylink DJ. Genetic variability in adult bone density among inbred strains of mice. Bone. 1996;18(5):397–403. https://doi.org/10.1016/8756-3282(96)00047-6.
Article
CAS
PubMed
Google Scholar
Kahn A, Gibbons R, Perkins S, Gazit D. Age-related bone loss. A hypothesis and initial assessment in mice. Clin Orthop Relat Res. 1995;313:69–75.
Google Scholar
Murray EJ, Song MK, Laird EC, Murray SS. Strain-dependent differences in vertebral bone mass, serum osteocalcin, and calcitonin in calcium-replete and -deficient mice. Proc Soc Exp Biol Med. 1993;203(1):64–73. https://doi.org/10.3181/00379727-203-43574.
Article
CAS
PubMed
Google Scholar
Abdallah BM, Kassem M. New factors controlling the balance between osteoblastogenesis and adipogenesis. Bone. 2012;50(2):540–5. https://doi.org/10.1016/j.bone.2011.06.030.
Article
CAS
PubMed
Google Scholar
Saussez S, Lorfevre F, Lequeux T, Laurent G, Chantrain G, Vertongen F, et al. The determination of the levels of circulating galectin-1 and -3 in HNSCC patients could be used to monitor tumor progression and/or responses to therapy. Oral Oncol. 2008;44(1):86–93. https://doi.org/10.1016/j.oraloncology.2006.12.014.
Kuo PL, Hung JY, Huang SK, Chou SH, Cheng DE, Jong YJ, et al. Lung cancer-derived galectin-1 mediates dendritic cell anergy through inhibitor of DNA binding 3/IL-10 signaling pathway. J Immunol. 2011;186(3):1521–30. https://doi.org/10.4049/jimmunol.1002940.
Cedeno-Laurent F, Watanabe R, Teague JE, Kupper TS, Clark RA, Dimitroff CJ, et al. Galectin-1 inhibits the viability, proliferation, and Th1 cytokine production of nonmalignant T cells in patients with leukemic cutaneous T-cell lymphoma. Blood. 2012;119(15):3534–8. https://doi.org/10.1182/blood-2011-12-396457.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ouyang J, Plütschow A, von Strandmann EP, Reiners KS, Ponader S, Rabinovich GA, et al. Galectin-1 serum levels reflect tumor burden and adverse clinical features in classical Hodgkin lymphoma. Blood. 2013;121(17):3431–3. https://doi.org/10.1182/blood-2012-12-474569.
Saussez S, Glinoer D, Chantrain G, Pattou F, Carnaille B, André S, et al. Serum galectin-1 and galectin-3 levels in benign and malignant nodular thyroid disease. Thyroid. 2008;18(7):705–12. https://doi.org/10.1089/thy.2007.0361.
Mendez-Huergo SP, Hockl PF, Stupirski JC, Maller SM, Morosi LG, Pinto NA, et al. Clinical relevance of Galectin-1 and Galectin-3 in rheumatoid arthritis patients: differential regulation and correlation with disease activity. Front Immunol. 2018;9:3057–65.
Article
CAS
Google Scholar
Acar S, Paketçi A, Küme T, Tuhan H, Çalan ÖG, Demir K, et al. Serum galectin-1 levels are positively correlated with body fat and negatively with fasting glucose in obese children. Peptides. 2017;95:51–6. https://doi.org/10.1016/j.peptides.2017.07.009.
Article
CAS
PubMed
Google Scholar
Nakajima K, Kho DH, Yanagawa T, Harazono Y, Gao X, Hogan V, et al. Galectin-3 inhibits osteoblast differentiation through notch signaling. Neoplasia. 2014;16(11):939–49. https://doi.org/10.1016/j.neo.2014.09.005.
Iacobini C, Blasetti Fantauzzi C, Bedini R, Pecci R, Bartolazzi A, Amadio B, et al. Galectin-3 is essential for proper bone cell differentiation and activity, bone remodeling and biomechanical competence in mice. Metabolism. 2018;83:149–58. https://doi.org/10.1016/j.metabol.2018.02.001.
Maupin KA, Weaver K, Bergsma A, Christie C, Zhong ZA, Yang T, et al. Enhanced cortical bone expansion in Lgals3-deficient mice during aging. Bone Res. 2018;6(1):7. https://doi.org/10.1038/s41413-017-0003-6.
Vinik Y, Shatz-Azoulay H, Vivanti A, Hever N, Levy Y, Karmona R, et al. The mammalian lectin galectin-8 induces RANKL expression, osteoclastogenesis, and bone mass reduction in mice. Elife. 2015;4:e05914. https://doi.org/10.7554/eLife.05914.
Bonucci E, Ballanti P. Osteoporosis-bone remodeling and animal models. Toxicol Pathol. 2014;42(6):957–69. https://doi.org/10.1177/0192623313512428.
Article
CAS
PubMed
Google Scholar
Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 2020;18:e3000410.
Article
CAS
Google Scholar