Adachi JD, Ioannidis G, Pickard L: The association between osteoporotic fractures and health-related quality of life as measured by the Health Utilities Index in the Canadian Multicentre Osteoporosis Study (CaMos). Osteoporos Int. 2003, 14: 895-904. 10.1007/s00198-003-1483-3.
Article
CAS
PubMed
Google Scholar
Robbins JA, Biggs ML, Cauley J: Adjusted mortality after hip fracture: From the cardiovascular health study. J Am Geriatr Soc. 2006, 54: 1885-91. 10.1111/j.1532-5415.2006.00985.x.
Article
PubMed
Google Scholar
Braithwaite RS, Col NF, Wong JB: Estimating hip fracture morbidity, mortality and costs. J Am Geriatr Soc. 2003, 51: 364-70. 10.1046/j.1532-5415.2003.51110.x.
Article
PubMed
Google Scholar
Wiktorowicz ME, Goeree R, Papaioannou A, Adachi JD, Papadimitropoulos E: Economic implications of hip fracture: health service use, institutional care and cost in Canada. Osteoporos Int. 2001, 12: 271-8. 10.1007/s001980170116.
Article
CAS
PubMed
Google Scholar
Macdonald HM, New SA, Fraser WD, Campbell MK, Reid DM: Low dietary potassium intakes and high dietary estimates of net endogenous acid production are associated with low bone mineral density in premenopausal women and increased markers of bone resorption in postmenopausal women. Am J Clin Nutr. 2005, 81: 923-33.
CAS
PubMed
Google Scholar
Maurer M, Riesen W, Muser J, Hulter HN, Krapf R: Neutralization of Western diet inhibits bone resorption independently of K intake and reduces cortisol secretion in humans. Am J Physiol Renal Physiol. 2003, 284: F32-F40.
Article
CAS
PubMed
Google Scholar
Sebastian A, Harris ST, Ottaway JH, Todd KM, Morris RC: Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N Engl J Med. 1994, 330: 1776-81. 10.1056/NEJM199406233302502.
Article
CAS
PubMed
Google Scholar
Lemann J, Pleuss JA, Gray RW, Hoffmann RG: Potassium administration reduces and potassium deprivation increases urinary calcium excretion in healthy adults [corrected]. Kidney Int. 1991, 39: 973-83. 10.1038/ki.1991.123.
Article
PubMed
Google Scholar
Frassetto L, Morris RC, Sebastian A: Long-term persistence of the urine calcium-lowering effect of potassium bicarbonate in postmenopausal women. J Clin Endocrinol Metab. 2005, 90: 831-4. 10.1210/jc.2004-1350.
Article
CAS
PubMed
Google Scholar
Remer T, Manz F: Estimation of the renal net acid excretion by adults consuming diets containing variable amounts of protein. Am J Clin Nutr. 1994, 59: 1356-61.
CAS
PubMed
Google Scholar
Buclin T, Cosma M, Appenzeller M: Diet acids and alkalis influence calcium retention in bone. Osteoporos Int. 2001, 12: 493-9. 10.1007/s001980170095.
Article
CAS
PubMed
Google Scholar
Bell JA, Whiting SJ: Effect of fruit on net acid and urinary calcium excretion in an acute feeding trial of women. Nutrition. 2004, 20: 492-3. 10.1016/j.nut.2004.01.015.
Article
CAS
PubMed
Google Scholar
Jehle S, Zanetti A, Muser J, Hulter HN, Krapf R: Partial neutralization of the acidogenic Western diet with potassium citrate increases bone mass in postmenopausal women with osteopenia. J Am Soc Nephrol. 2006, 17: 3213-22. 10.1681/ASN.2006030233.
Article
CAS
PubMed
Google Scholar
Macdonald HM, Black AJ, Aucott L: Effect of potassium citrate supplementation or increased fruit and vegetable intake on bone metabolism in healthy postmenopausal women: a randomized controlled trial. Am J Clin Nutr. 2008, 88: 465-74.
CAS
PubMed
Google Scholar
Remer T, Manz F: Potential renal acid load of foods and its influence on urine pH. J Am Diet Assoc. 1995, 95: 791-7. 10.1016/S0002-8223(95)00219-7.
Article
CAS
PubMed
Google Scholar
Macdonald HM, New SA, Golden MH, Campbell MK, Reid DM: Nutritional associations with bone loss during the menopausal transition: evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of a detrimental effect of fatty acids. Am J Clin Nutr. 2004, 79: 155-65.
CAS
PubMed
Google Scholar
Tucker KL, Hannan MT, Chen H, Cupples LA, Wilson PW, Kiel DP: Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am J Clin Nutr. 1999, 69: 727-36.
CAS
PubMed
Google Scholar
Tucker KL, Hannan MT, Kiel DP: The acid-base hypothesis: diet and bone in the Framingham Osteoporosis Study. Eur J Nutr. 2001, 40: 231-7. 10.1007/s394-001-8350-8.
Article
CAS
PubMed
Google Scholar
Kaptoge S, Welch A, McTaggart A: Effects of dietary nutrients and food groups on bone loss from the proximal femur in men and women in the 7th and 8th decades of age. Osteoporos Int. 2003, 14: 418-28. 10.1007/s00198-003-1484-2.
Article
CAS
PubMed
Google Scholar
Whiting SJ, Draper HH: Effect of a chronic acid load as sulfate or sulfur amino acids on bone metabolism in adult rats. J Nutr. 1981, 111: 1721-6.
CAS
PubMed
Google Scholar
DuBose TD: Acid-base disorders. Edited by: Brenner BM. 2000, Brenner & Rector's The Kidney. Saunders, 935-7. 6
Google Scholar
Institute of Medicine (IOM): Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate. 2004, Washington DC: The National Academies Press
Google Scholar
Burns L, Ashwell M, Berry J: UK Food Standards Agency Optimal Nutrition Status Workshop: environmental factors that affect bone health throughout life. Br J Nutr. 2003, 89: 835-40. 10.1079/BJN2003855.
Article
CAS
PubMed
Google Scholar
Energize for Life: 2009, (accessed 24 April 2010), [http://www.energiseforlife.com/cat--Alkalising-Supplements--ALKALISING_SUPPLEMENTS.html]
Acid-2-Alkaline: 2010, (accessed 24 April 2010), [http://www.alkalinebodybalance.com/]
Young RO: The pH Miracle: Balance your Diet, reclaim your health. 2003, New York: Grand Central Publishers
Google Scholar
Brown SE: Better bones, Better body. 2000, Columbus: McGraw Hill
Google Scholar
Vasey C: Acid Alkaline Diet. 2006, Rochester: Healing Arts Press
Google Scholar
Acid-2-Alkaline: 2009, (accessed 30 October 2009), [http://www.alkalinebodybalance.com/]
Roughead ZK, Johnson LK, Lykken GI, Hunt JR: Controlled high meat diets do not affect calcium retention or indices of bone status in healthy postmenopausal women. J Nutr. 2003, 133: 1020-6.
CAS
PubMed
Google Scholar
Michaud DS, Troiano RP, Subar AF: Comparison of estimated renal net acid excretion from dietary intake and body size with urine pH. J Am Diet Assoc. 2003, 103: 1001-7. 10.1016/S0002-8223(03)00469-3.
Article
PubMed
Google Scholar
Lemann J, Litzow JR, Lennon EJ: The effects of chronic acid loads in normal man: further evidence for the participation of bone mineral in the defense against chronic metabolic acidosis. J Clin Invest. 1966, 45: 1608-14. 10.1172/JCI105467.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lemann J, Gray RW, Pleuss JA: Potassium bicarbonate, but not sodium bicarbonate, reduces urinary calcium excretion and improves calcium balance in healthy men. Kidney Int. 1989, 35: 688-95. 10.1038/ki.1989.40.
Article
PubMed
Google Scholar
Burtis C, Ashwood E, Tietz N: Tietz Textbook of Clinical Chemistry. 1999, Philadelphia: W.B. Saunders
Google Scholar
Oh MS: New perspectives on acid-base balance. Semin Dial. 2000, 13: 212-9. 10.1046/j.1525-139x.2000.00061.x.
Article
CAS
PubMed
Google Scholar
Kreiger N, Tenenhouse A, Joseph L: Research Notes: Osteoporosis Study (CaMos): Background, rationale, methods. Can J Aging. 1999, 18: 376-87. 10.1017/S0714980800009934.
Article
Google Scholar
Berkemeyer S, Remer T: Anthropometrics provide a better estimate of urinary organic acid anion excretion than a dietary mineral intake-based estimate in children, adolescents, and young adults. J Nutr. 2006, 136: 1203-8.
CAS
PubMed
Google Scholar
Reid IR: Relationships among body mass, its components, and bone. Bone. 2002, 31: 547-55. 10.1016/S8756-3282(02)00864-5.
Article
CAS
PubMed
Google Scholar
Reid IR, Plank LD, Evans MC: Fat mass is an important determinant of whole body bone density in premenopausal women but not in men. J Clin Endocrinol Metab. 1992, 75: 779-82. 10.1210/jc.75.3.779.
CAS
PubMed
Google Scholar
Sirola J, Kroger H, Honkanen R: Risk factors associated with peri- and postmenopausal bone loss: does HRT prevent weight loss-related bone loss?. Osteoporos Int. 2003, 14: 27-33. 10.1007/s00198-002-1318-7.
Article
CAS
PubMed
Google Scholar
National Kidney Foundation: K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002, 39: S1-266. 10.1016/S0272-6386(02)70081-4.
Google Scholar
Whittemore AS, Kolonel LN, Wu AH: Prostate cancer in relation to diet, physical activity, and body size in blacks, whites, and Asians in the United States and Canada. J Natl Cancer Inst. 1995, 87: 652-61. 10.1093/jnci/87.9.652.
Article
CAS
PubMed
Google Scholar
Lappe JM, Davies KM, Travers-Gustafson D, Heaney RP: Vitamin D status in a rural postmenopausal female population. J Am Coll Nutr. 2006, 25: 395-402.
Article
CAS
PubMed
Google Scholar
Vickers AJ, Altman DG: Statistics notes: Analysing controlled trials with baseline and follow up measurements. BMJ. 2001, 323: 1123-4. 10.1136/bmj.323.7321.1123.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rothman KJ: Using regression models in epidemiologic analysis. Epidemiology, An Introduction. 2002, New York: Oxford University Press, 181-97.
Google Scholar
Fenton TR, Eliasziw M, Lyon AW, Tough SC, Hanley DA: Meta-analysis of the quantity of calcium excretion associated with the net acid excretion of the modern diet under the acid-ash diet hypothesis. Am J Clin Nutr. 2008, 88: 1159-66.
CAS
PubMed
Google Scholar
Vatanparast H, Baxter-Jones A, Faulkner RA, Bailey DA, Whiting SJ: Positive effects of vegetable and fruit consumption and calcium intake on bone mineral accrual in boys during growth from childhood to adolescence: the University of Saskatchewan Pediatric Bone Mineral Accrual Study. Am J Clin Nutr. 2005, 82: 700-6.
CAS
PubMed
Google Scholar
Cochrane Handbook for Systematic Reviews of Interventions. 2008, The Cochrane Collaboration
Schulz KF, Chalmers I, Hayes RJ, Altman DG: Empirical evidence of bias. Dimensions of methodological quality associated with estimates of treatment effects in controlled trials. JAMA. 1995, 273: 408-12. 10.1001/jama.273.5.408.
Article
CAS
PubMed
Google Scholar
Dargent-Molina P, Sabia S, Touvier M: Proteins, Dietary Acid Load, and Calcium and Risk of Post-Menopausal Fractures in the E3N French Women Prospective Study. J Bone Miner Res. 2008
Google Scholar
Thorpe DL, Knutsen SF, Beeson WL, Rajaram S, Fraser GE: Effects of meat consumption and vegetarian diet on risk of wrist fracture over 25 years in a cohort of peri- and postmenopausal women. Public Health Nutr. 2008, 11: 564-72. 10.1017/S1368980007000808.
Article
PubMed
Google Scholar
Fenton TR, Lyon AW, Eliasziw M, Tough SC, Hanley DA: Meta-analysis of the effect of the acid-ash hypothesis of osteoporosis on calcium balance. Journal of Bone and Mineral Research. 2009, Epub
Google Scholar
Darling AL, Millward DJ, Torgerson DJ, Hewitt CE, Lanham-New SA: Dietary protein and bone health: a systematic review and meta-analysis. Am J Clin Nutr. 2009, 90: 1674-92. 10.3945/ajcn.2009.27799.
Article
CAS
PubMed
Google Scholar
Fenton TR, Lyon AW, Eliasziw M, Tough SC, Hanley DA: Phosphate decreases urine calcium and increases calcium balance: A meta-analysis of the osteoporosis acid-ash diet hypothesis. Nutr J. 2009, 8: 41-10.1186/1475-2891-8-41.
Article
PubMed
PubMed Central
Google Scholar
Oster JR, Lopez R, Perez GO, Alpert HA, Al Reshaid KA, Vaamonde CA: The stability of pH, PCO2, and calculated [HCO3] of urine samples collected under oil. Nephron. 1988, 50: 320-4. 10.1159/000185196.
Article
CAS
PubMed
Google Scholar
Regulation of hydrogen ion balance: Vander's Renal Physiology. Edited by: Eaton DC. 2004, New York: McGraw Hill, 150-79. 6
Dubois L, Girard M, Bergeron N: The choice of a diet quality indicator to evaluate the nutritional health of populations. Public Health Nutr. 2000, 3: 357-65. 10.1017/S1368980000000409.
Article
CAS
PubMed
Google Scholar
Ghadirian P, Shatenstein B, Lambert J: Food habits of French Canadians in Montreal, Quebec. J Am Coll Nutr. 1995, 14: 37-45.
Article
CAS
PubMed
Google Scholar
Miller PD, Zapalowski C: Bone mineral density measurements. The Osteoporosis Primer. Edited by: Henderson JE, Goltzman D. 2000, Cambridge: Cambridge Press, 262-76.
Chapter
Google Scholar
Davison KS, Siminoski K, Adachi JD: The effects of antifracture therapies on the components of bone strength: assessment of fracture risk today and in the future. Semin Arthritis Rheum. 2006, 36: 10-21. 10.1016/j.semarthrit.2006.04.001.
Article
CAS
PubMed
Google Scholar
Davison KS, Siminoski K, Adachi JD: Bone strength: the whole is greater than the sum of its parts. Semin Arthritis Rheum. 2006, 36: 22-31. 10.1016/j.semarthrit.2006.04.002.
Article
PubMed
Google Scholar
Rumpler WV, Kramer M, Rhodes DG, Moshfegh AJ, Paul DR: Identifying sources of reporting error using measured food intake. Eur J Clin Nutr. 2008, 62: 544-52. 10.1038/sj.ejcn.1602742.
Article
CAS
PubMed
Google Scholar
Neuhouser ML, Tinker L, Shaw PA: Use of recovery biomarkers to calibrate nutrient consumption self-reports in the Women's Health Initiative. Am J Epidemiol. 2008, 167: 1247-59. 10.1093/aje/kwn026.
Article
PubMed
Google Scholar
Oh MS: A new method for estimating G-I absorption of alkali. Kidney Int. 1989, 36: 915-7. 10.1038/ki.1989.280.
Article
CAS
PubMed
Google Scholar
le Riche M, Zemlin AE, Erasmus RT, Davids MR: An audit of 24-hour creatinine clearance measurements at Tygerberg Hospital and comparison with prediction equations. S Afr Med J. 2007, 97: 968-70.
PubMed
Google Scholar
Bonjour JP: Dietary protein: an essential nutrient for bone health. J Am Coll Nutr. 2005, 24: 526S-36S.
Article
CAS
PubMed
Google Scholar