Cheng JC, Castelein RM, Chu WC, Danielsson AJ, Dobbs MB, Grivas TB, et al. Adolescent idiopathic scoliosis. Nature Rev Dis Primers. 2015;1:15030.
Article
Google Scholar
Negrini S, Donzelli S, Aulisa AG, Czaprowski D, Schreiber S, de Mauroy JC, et al. 2016 SOSORT guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis Spinal Disord. 2018;13(1):1–48.
Article
Google Scholar
Wong HK, Hui JH, Rajan U, Chia HP. Idiopathic scoliosis in Singapore school children: a prevalence study 15 years into the screening program. Spine (Phila Pa 1976). 2005;30(10):1188–96.
Article
Google Scholar
Zhang H, Guo C, Tang M, Liu S, Li J, Guo Q, et al. Prevalence of scoliosis among primary and middle school students in Mainland China: a systematic review and meta-analysis. Spine (Phila Pa 1976). 2015;40(1):41–9.
Article
Google Scholar
Cheung CSK, Lee WTK, Tse YK, Lee KM, Guo X, Qin L, et al. Generalized osteopenia in adolescent idiopathic scoliosis- association with abnormal pubertal growth, bone turnover, and calcium intake? Spine (Phila Pa 1976). 2006;31(3):330–8.
Article
Google Scholar
Suh KT, Eun IS, Lee JS. Polymorphism in vitamin D receptor is associated with bone mineral density in patients with adolescent idiopathic scoliosis. Eur Spine J. 2010;19(9):1545–50.
Article
Google Scholar
Cheuk KY, Zhu TY, Yu FW, Hung VW, Lee KM, Qin L, et al. Abnormal bone mechanical and structural properties in adolescent idiopathic scoliosis: a study with finite element analysis and structural model index. Calcif Tissue Int. 2015;97(4):343–52.
Article
CAS
Google Scholar
Lam TP, Ng BK, Cheung LW, Lee KM, Qin L, Cheng JC. Effect of whole body vibration (WBV) therapy on bone density and bone quality in osteopenic girls with adolescent idiopathic scoliosis: a randomized, controlled trial. Osteoporos Int. 2013;24(5):1623–36.
Article
CAS
Google Scholar
Yip BH, Yu FW, Wang Z, Hung VW, Lam TP, Ng BK, et al. Prognostic value of bone mineral density on curve progression: a longitudinal cohort study of 513 girls with adolescent idiopathic scoliosis. Sci Rep. 2016;6:39220.
Article
CAS
Google Scholar
Hung VWY, Qin L, Cheung CSK, Lam TP, Ng BKW, Tse YK, et al. Osteopenia: a new prognostic factor of curve progression in adolescent idiopathic scoliosis. J Bone Joint Surg Am. 2005;87(12):2709–16.
CAS
Google Scholar
Zhao F-D, Pollintine P, Hole B, Adams M, Dolan P. Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone. Bone. 2009;44(2):372–9.
Article
Google Scholar
Wang WJ, Hung VWY, Lam TP, Ng BKW, Qin L, Lee KM, et al. The association of disproportionate skeletal growth and abnormal radius dimension ratio with curve severity in adolescent idiopathic scoliosis. Eur Spine J. 2010;19(5):726–31.
Article
Google Scholar
Monticone M, Ambrosini E, Cazzaniga D, Rocca B, Ferrante S. Active self-correction and task-oriented exercises reduce spinal deformity and improve quality of life in subjects with mild adolescent idiopathic scoliosis. Results of a randomised controlled trial. Eur Spine J. 2014;23(6):1204–14.
Article
Google Scholar
Lotan S, Kalichman L. Manual therapy treatment for adolescent idiopathic scoliosis. J Bodyw Mov Ther. 2019;23(1):189–93.
Article
Google Scholar
El Hawary R, Zaaroor-Regev D, Floman Y, Lonner BS, Alkhalife YI, Betz RR. Brace treatment in adolescent idiopathic scoliosis: risk factors for failure—a literature review. Spine J. 2019;19(12):1917–25.
Article
Google Scholar
Ammann P, Rizzoli R. Bone strength and its determinants. Osteoporos Int. 2003;14(3):13–8.
Article
Google Scholar
Smit TH. Adolescent idiopathic scoliosis: the mechanobiology of differential growth. JOR spine. 2020;3(4):e1115.
Article
Google Scholar
FitzPatrick SK, Casemyr NE, Zurakowski D, Day CS, Rozental TD. The effect of osteoporosis on outcomes of operatively treated distal radius fractures. J Hand Surg. 2012;37(10):2027–34.
Article
Google Scholar
Sun X, Wu T, Liu Z, Zhu Z, Qian B, Zhu F, et al. Osteopenia predicts curve progression of adolescent idiopathic scoliosis in girls treated with brace treatment. J Pediatr Orthop. 2013;33(4):366–71.
Article
Google Scholar
Cheng JC, Hung VW, Lee WT, Yeung HY, Lam TP, Ng BK, et al. Persistent osteopenia in adolescent idiopathic scoliosis–longitudinal monitoring of bone mineral density until skeletal maturity. Stud Health Technol Inform. 2006;123:47–51.
CAS
Google Scholar
Xu F, Li W, Yang X, Na L, Chen L, Liu G. The roles of epigenetics regulation in bone metabolism and osteoporosis. Front Cell Develop Biol. 2021;8:619301.
Article
Google Scholar
Zhang W, Yang G-J, Wu S-X, Li D-Q, Xu Y-B, Ma C-H, et al. The guiding role of bone metabolism test in osteoporosis treatment. Am J Clin Exp Immunol. 2018;7(2):40.
Google Scholar
Wang Y, Wang L, Sun Y, Wu M, Ma Y, Yang L, et al. Prediction model for the risk of osteoporosis incorporating factors of disease history and living habits in physical examination of population in Chongqing, Southwest China: based on artificial neural network. BMC Public Health. 2021;21(1):1–10.
Google Scholar
Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467–73.
Article
Google Scholar
Sterne JA, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:14898.
Google Scholar
Peterson J, Welch V, Losos M, Tugwell P. The Newcastle Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa: Ottawa Hosp Res Inst. 2011;2(1):1–12.
Google Scholar
Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017;358:j4008.
Article
Google Scholar
Chen WJ, Qiu Y, Zhu F, Zhu ZZ, Sun X, Liu Z, et al. Vitamin D receptor gene polymorphisms: no association with low bone mineral density in adolescent idiopathic scoliosis girls. Chin J Surg. 2008;46(15):1183–6.
Google Scholar
Cheng KL, Li QQ, Wang Y, Zhang J, Lam TP, Hung A, et al. Lower WNT16 expression in patients with adolescent idiopathic scoliosis - potential link to lower bone mass in AIS? Stud Health Technol Inform. 2021;280:23–8.
CAS
Google Scholar
Chiru M. Adolescent idiopathic scoliosis and osteopenia. Maedica. 2011;6(1):17–22.
Google Scholar
Dai J, Lv ZT, Huang JM, Cheng P, Fang H, Chen AM. Association between polymorphisms in vitamin D receptor gene and adolescent idiopathic scoliosis: a meta-analysis. Eur Spine J. 2018;27(9):2175–83.
Article
Google Scholar
Eun IS, Park WW, Suh KT, Kim JI, Lee JS. Association between osteoprotegerin gene polymorphism and bone mineral density in patients with adolescent idiopathic scoliosis. Eur Spine J. 2009;18(12):1936–40.
Article
Google Scholar
Gao J, Zhang L, Liu Z, Yao S, Gao S. Correlation analysis between interleukin 6 polymorphism and adolescent idiopathic scoliosis susceptibility and bracing effectiveness. Chin J Rep Reconstr Surg. 2018;32(6):678–84.
Google Scholar
Lee JS, Suh KT, Eun IS. Polymorphism in interleukin-6 gene is associated with bone mineral density in patients with adolescent idiopathic scoliosis. J Bone Joint Surg Br. 2010;92(8):1118–22.
Article
CAS
Google Scholar
Lee WYW, Zhang J, Wang Y, Leung RKK, Lam TP, Qiu Y, et al. miR-145 overexpression impairs osteocytes structure and function in Adolescent Idiopathic Scoliosis. J Bone Miner Res. 2017;32:S352.
Google Scholar
Liu Z, Qiu Y, Wang B, Ma W, Zhu F, Zhu Z, et al. The relationship between RANKL/OPG and the decreased bone mass in adolescent idiopathic scoliosis patients. Stud Health Technol Inform. 2008;140:345.
Google Scholar
Man GCW, Tang NLS, Lee WYW, Zhang J, Ng BKW, Xu L, et al. Expression of LBX1 in muscle and bone of adolescent idiopathic scoliosis in Chinese. J Orthop Res. 2017;35(S1):S1.
Google Scholar
Moon ES, Kim HS, Sharma V, Park JO, Lee HM, Moon SH, et al. Analysis of single nucleotide polymorphism in adolescent idiopathic scoliosis in Korea: for personalized treatment. Yonsei Med J. 2013;54(2):500–9.
Article
CAS
Google Scholar
Park WW, Suh KT, Kim JI, Kim SJ, Lee JS. Decreased osteogenic differentiation of mesenchymal stem cells and reduced bone mineral density in patients with adolescent idiopathic scoliosis. Eur Spine J. 2009;18(12):1920–6.
Article
Google Scholar
Popa O, Anton MC, Vladoiu S, Manda D, Ianas O. Osteocalcin, OPG and RANKL circulating levels in adolescent idiopathic scoliosis. Endocr Abstr. 2010;22:P106.
Google Scholar
Qiu XS, Tang NL, Yeung HY, Qiu Y, Cheng JC. Genetic association study of growth hormone receptor and idiopathic scoliosis. Clin Orthop Relat Res. 2007;462:53–8.
Article
Google Scholar
Suh KT, Lee SS, Hwang SH, Kim SJ, Lee JS. Elevated soluble receptor activator of nuclear factor-κB ligand and reduced bone mineral density in patients with adolescent idiopathic scoliosis. Eur Spine J. 2007;16(10):1563–9.
Article
Google Scholar
Sun C, Qiu Y, Yin G, Shu H, Liu Z, Wang XH, et al. Abnormal expression and significance of Runx2 in osteoblasts of adolescent idiopathic scoliosis patients. Chin J Surg. 2009;47(19):1495–8.
Google Scholar
Sun C, Yin G, Yeung H, Tang NLS, Cheng JCY, Qiu Y. Abnormal expression of Runx2, RANKL and osteoprotegerin in osteoblasts from adolescent idiopathic scoliosis. Stud Health Technol Inform. 2010;158:196.
Google Scholar
Wang WJ, Sun C, Liu Z, Sun X, Zhu F, Zhu ZZ, et al. Transcription factor runx2 in the low bone mineral density of girls with adolescent idiopathic scoliosis. Orthop Surg. 2014;6(1):8–14.
Article
Google Scholar
Wu J, Qiu Y, Zhang L, Sun Y, Chen X. Association of estrogen receptor gene polymorphisms with bone mineral density in adolescent idiopathic scoliosis. Osteoporos Int. 2007;18:S69–70.
Google Scholar
Wu Z, Dai Z, Yuwen W, Liu Z, Qiu Y, Cheng JC, et al. Genetic variants of CHD7 are associated with adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2021;46(11):E618-e24.
Article
Google Scholar
Xiao L, Zhang H, Wang Y, Li J, Yang G, Wang L, et al. Dysregulation of the ghrelin/RANKL/OPG pathway in bone mass is related to AIS osteopenia. Bone. 2020;134:115291.
Article
CAS
Google Scholar
Yeung HY, Tang NL, Lee KM, Ng BK, Hung VW, Kwok R, et al. Genetic association study of insulin-like growth factor-I (IGF-I) gene with curve severity and osteopenia in adolescent idiopathic scoliosis. Stud Health Technol Inform. 2006;123:18–24.
CAS
Google Scholar
Yin X, Wang HD, Guo JD, Zhang L, Zhang YP, Li L, et al. Association of vitamin D receptor BsmI rs1544410 and ApaI rs7975232 polymorphisms with susceptibility to adolescent idiopathic scoliosis a systematic review and meta-analysis. Med. 2018;97(2):e9627.
Article
CAS
Google Scholar
Zhang HQ, Wang LJ, Liu SH, Li J, Xiao LG, Yang GT. Adiponectin regulates bone mass in AIS osteopenia via RANKL/OPG and IL6 pathway. J Trans Med. 2019;17:64.
Article
Google Scholar
Zhang J, Lee WYW, Chen H, Tam EMS, Man GC, Lam TP, et al. Dysfunctional osteogenic and osteocytic activity in adolescent idiopathic scoliosis (AIS). Scol Spinal Disord. 2017;12(Suppl 1):17.
Zhang JJ, Chen HX, Leung RKK, Choy KW, Lam TP, Ng BKW, et al. Aberrant miR-145-5p/-catenin signal impairs osteocyte function in adolescent idiopathic scoliosis. FASEB J. 2018;32(12):6537–49.
Article
CAS
Google Scholar
Zhou S, Wang WJ, Zhu ZZ, Sun X, Zhu F, Yu Y, et al. Increased expression of receptor activator of nuclear factor-kappa B ligand in osteoblasts from adolescent idiopathic scoliosis patients with low bone mineral density. J Huazhong Univ Sci Technolog Med Sci. 2012;32(5):686–90.
Article
CAS
Google Scholar
Zhuang Q, Li J, Wu Z, Zhang J, Sun W, Li T, et al. Differential proteome analysis of bone marrow mesenchymal stem cells from adolescent idiopathic scoliosis patients. PLoS One. 2011;6(4):18834.
Article
Google Scholar
Zhuang Q, Mao W, Xu P, Li H, Sun Z, Li S, et al. Identification of differential genes expression profiles and pathways of bone marrow mesenchymal stem cells of adolescent idiopathic scoliosis patients by microarray and integrated gene network analysis. Spine (Phila Pa 1976). 2016;41(10):840–55.
Article
Google Scholar
Lam EMS, Lee W, Cheuk KY, Lam TP, Ng BKW, Lee SKM, et al. Morphological and bone strength indices in girls with adolescent idiopathic scoliosis and their correlations with leptin and soluble leptin receptor. Scoliosis. 2015;10:1.
Article
CAS
Google Scholar
Lee WYW, Chen H, Cheuk KY, Tam EMS, Lam TP, Ng BKW, et al. How does serum sclerostin level correlate with bone mass and bone quality in adolescent idiopathic scoliosis? J Orthop Res. 2017;35:1755.
Qiu Y, Sun X, Qiu X, Li W, Zhu Z, Zhu F, et al. Decreased circulating leptin level and its association with body and bone mass in girls with adolescent idiopathic scoliosis. Spine(Phila Pa 1976). 2007;32(24):2703–10.
Article
Google Scholar
Tam EM, Yu FW, Hung VW, Liu Z, Liu KL, Ng BK, et al. Are volumetric bone mineral density and bone micro-architecture associated with leptin and soluble leptin receptor levels in adolescent idiopathic scoliosis?–A case-control study. PLoS ONE. 2014;9(2):e87939.
Article
Google Scholar
Tam EMS, Yu FWP, Hung VWY, Yu WS, Liu Z, Lam TP, et al. Correlation of morphological and bone strength indices with serum leptin and soluble leptin receptor in girls with adolescent idiopathic scoliosis: a pilot study. Osteoporos Int. 2013;24:S631–2.
Google Scholar
Wang Q, Wang C, Hu W, Hu F, Liu W, Zhang X. Disordered leptin and ghrelin bioactivity in adolescent idiopathic scoliosis (AIS): a systematic review and meta-analysis. J Orthop Surg Res. 2020;15(1):1–9.
Article
Google Scholar
Wu J, Qiu Y, Zhang L, Sun YF, Chen X. Changes of bone mineral density in association with serum interleukin-6 in adolescent idiopathic scoliosis. Chin J Clin Rehab. 2005;9(10):223–5.
CAS
Google Scholar
Xiao L, Yang G, Zhang H, Liu J, Guo C, Sun Y. Nontargeted metabolomic analysis of plasma metabolite changes in patients with adolescent idiopathic scoliosis. Mediators Inflamm. 2021;2021:5537811.
Article
Google Scholar
Alsiddiky A, Alfadhil R, Al-aqel M, Ababtain N, Almajed N, Bakarman K, et al. Assessment of serum vitamin D levels in surgical adolescent idiopathic scoliosis patients. BMC Pediatr. 2020;20(1):1–5.
Article
Google Scholar
Balioglu MB, Aydin C, Kargin D, Albayrak A, Atici Y, Tas SK, et al. Vitamin-D measurement in patients with adolescent idiopathic scoliosis. J Pediatr Orthop-Part B. 2017;26(1):48–52.
Article
Google Scholar
Batista R, Martins DE, Hayashi LF, Lazaretti-Castro M, Puertas EB, Wajchenberg M. Association between vitamin D serum levels and adolescent idiopathic scoliosis. Scoliosis. 2014;9:1.
Article
Google Scholar
Catan L, Cerbu S, Amaricai E, Suciu O, Horhat DI, Popoiu CM, et al. Assessment of static plantar pressure, stabilometry, vitamin d and bone mineral density in female adolescents with moderate idiopathic scoliosis. Int J Environ Res Public Health. 2020;17(6):2167.
Article
CAS
Google Scholar
Cheng JCY, Lau JTF, Ho S, Guo X. Nutrition and physical activity as possible factors affecting bone mineral status in adolescent idiopathic scoliosis: cross-sectional and case-control studies. Hong Kong Med J. 2007;13(3):33–5.
Google Scholar
Cheuk KY, Hung VWY, Yu FWP, Wong LLN, Lee WYW, Cheng JCY, et al. Unique correlation pattern between bone qualities and handgrip strength in adolescent idiopathic scoliosis (AIS) girls. Scol Spinal Disord. 2018;13(Suppl 1):O12.
Christen P, Marano G, Wayne Lee YW, Lam TP, Müller R. Whole body vibration therapy triggers load-driven bone formation in adolescents with idiopathic scoliosis. J Bone Miner Res. 2017;32:S187.
Google Scholar
Lam TP, Ng BKW, Mak QWY, Tam EMS, Lee KM, Qin L, et al. Vitamin D level and its correlation with bone mineral density in girls with Adolescent Idiopathic Scoliosis (AIS). Osteoporos Int. 2013;24(Suppl 4):S640.
Lam TP, Wah Ng BK, Lee KM, Hung ALH, Tam EMS, Cheung FTF, et al. Serum 25 (OH) vitamin D level and its correlation with bone mineral density in girls with adolescent idiopathic scoliosis (AIS). Scoliosis. 2015;10:1.
CAS
Google Scholar
Lau RW, Cheuk KY, Ng BK, Tam EM, Hung AL, Cheng JC, et al. Effects of a home-based exercise intervention (E-Fit) on bone density, muscle function, and quality of life in girls with Adolescent Idiopathic Scoliosis (AIS): a pilot randomized controlled trial. Int J Environ Res Public Health. 2021;18(20):10899.
Article
Google Scholar
Lee WT, Cheng JC, Cheung CS, Guo X. Inadequate calcium intake is a significant determinant on generalised osteopenia in Hong Kong Chinese adolescents with idiopathic scoliosis. J Hyg Res. 2003;32(6):568–72.
Google Scholar
Lee WT, Cheung CS, Tse YK, Guo X, Qin L, Ho SC, et al. Generalized low bone mass of girls with adolescent idiopathic scoliosis is related to inadequate calcium intake and weight bearing physical activity in peripubertal period. Osteoporos Int. 2005;16(9):1024–35.
Article
CAS
Google Scholar
Lee WTK, Cheung CSK, Chau WW, Tse YK, Qin L, Cheng JCY. Poor calcium intake and inadequate physical activity are associated with generalized osteopenia throughout puberty in adolescents with idiopathic scoliosis (AIS). Osteoporos Int. 2006;17:403–4.
Google Scholar
Lee WTK, Cheung CSK, Chau WW, Tse YK, Qin L, Cheng JCY. Systemic osteopenia in adolescent idiopathic scoliosis (AIS) is associated with increased bone turnover, growth disturbance and inadequate calcium intake - a study of 900 adolescent girls. Osteo Int. 2006;17:432.
Google Scholar
Normand E, Franco A, Parent S, Moreau A, Marcil V. Metabolic, anthropometric and nutritional profile of girls with adolescent idiopathic scoliosis: a pilot study. J Bone Mineral Res. 2018;33:143.
Google Scholar
Tobias JH, Fairbank J, Harding I, Taylor HJ, Clark EM. Association between physical activity and scoliosis: a prospective cohort study. Int J Epidemiol. 2019;48(4):1152–60.
Article
Google Scholar
Yang G, Lam TP, Pang H, Yip B-K, Lee WY, Hung A-H, et al. A six years longitudinal cohort study on the changes in bone density and bone quality up to peak bone mass in adolescent idiopathic scoliosis with and without 2 years of calcium and vitamin d supplementation. J Bone Miner Res. 2020;35(SUPPL 1):78–9.
Google Scholar
Du Q, Zhou X, Li JA, He XH, Liang JP, Zhao L, et al. Quantitative ultrasound measurements of bone quality in female adolescents with idiopathic scoliosis compared to normal controls. J Manipulative Physiol Ther. 2015;38(6):434–41.
Article
Google Scholar
Sadat-Ali M, Al-Othman A, Bubshait D, Al-Dakheel D. Does scoliosis causes low bone mass? A comparative study between siblings. Eur Spine J. 2008;17(7):944–7.
Article
Google Scholar
Szalay EA, Bosch P, Schwend RM, Buggie B, Tandberg D, Sherman F. Adolescents with idiopathic scoliosis are not osteoporotic. Spine (Phila Pa 1976). 2008;33(7):802–6.
Article
Google Scholar
Tahvildari BP, Erfani MA, Nouraei H, Sadeghian M. Evaluation of bone mineral status in adolescent idiopathic scoliosis. Clin Orthop Surg. 2014;6(2):180–4.
Article
Google Scholar
Cheng JC, Qin L, Cheung CS, Sher AH, Lee KM, Ng SW, et al. Generalized low areal and volumetric bone mineral density in adolescent idiopathic scoliosis. J Bone Miner Res. 2000;15(8):1587–95.
Article
CAS
Google Scholar
Li XF, Li H, Liu ZD, Dai LY. Low bone mineral status in adolescent idiopathic scoliosis. Eur Spine J. 2008;17(11):1431–40.
Article
Google Scholar
Karaguzel G, Holick MF. Diagnosis and treatment of osteopenia. Rev Endocr Metab Disord. 2010;11(4):237–51.
Article
CAS
Google Scholar
Wang Z, Chen H, Yu YE, Zhang J, Cheuk KY, Ng BK, et al. Unique local bone tissue characteristics in iliac crest bone biopsy from adolescent idiopathic scoliosis with severe spinal deformity. Sci Rep. 2017;7:40265.
Article
CAS
Google Scholar
MacDonald PN, Baudino TA, Tokumaru H, Dowd DR, Zhang C. Vitamin D receptor and nuclear receptor coactivators: crucial interactions in vitamin D-mediated transcription. Steroids. 2001;66(3–5):171–6.
Article
CAS
Google Scholar
Wang TJ, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry D, et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet. 2010;376(9736):180–8.
Article
CAS
Google Scholar
Baek KH, Oh KW, Lee WY, Tae HJ, Rhee EJ, Han JH, et al. Changes in the serum sex steroids, IL-7 and RANKL-OPG system after bone marrow transplantation: influences on bone and mineral metabolism. Bone. 2006;39(6):1352–60.
Article
CAS
Google Scholar
García Palacios V, Robinson LJ, Borysenko CW, Lehmann T, Kalla SE, Blair HC. Negative regulation of RANKL-induced osteoclastic differentiation in RAW264.7 Cells by estrogen and phytoestrogens. J Biol Chem. 2005;280(14):13720–7.
Article
Google Scholar
Fu Y, Hu X, Gao Y, Li K, Fu Q, Liu Q, et al. LncRNA ROR/miR-145-5p axis modulates the osteoblasts proliferation and apoptosis in osteoporosis. Bioengineered. 2021;12(1):7714–23.
Article
CAS
Google Scholar
Bielby R, Jones E, McGonagle D. The role of mesenchymal stem cells in maintenance and repair of bone. Injury. 2007;38(Suppl 1):S26-32.
Article
Google Scholar
Komori T. Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem Cell Biol. 2018;149(4):313–23.
Article
CAS
Google Scholar
Wang Z, Yang Y, He M, Wang R, Ma J, Zhang Y, et al. Association between interleukin-6 gene polymorphisms and bone mineral density: a meta-analysis. Genet Test Mol Biomarkers. 2013;17(12):898–909.
Article
CAS
Google Scholar
Chen XX, Yang T. Roles of leptin in bone metabolism and bone diseases. J Bone Miner Metab. 2015;33(5):474–85.
Article
CAS
Google Scholar
Reid IR, Baldock PA, Cornish J. Effects of leptin on the skeleton. Endocr Rev. 2018;39(6):938–59.
Article
Google Scholar
Lateef M, Baig M, Azhar A. Serum Leptin and Bone Turnover Markers in Postmenopausal Osteoporosis. Topics in Osteoporosis [Internet]. 2013. Available from: http://dx.doi.org/10.5772/54527.
Rodrigo C, Tennekoon KH, Karunanayake EH, De Silva K, Amarasinghe I, Wijayasiri A. Circulating leptin, soluble leptin receptor, free leptin index, visfatin and selected leptin and leptin receptor gene polymorphisms in sporadic breast cancer. Endocr J. 2017;64(4):393–401.
Article
CAS
Google Scholar
Liang G, Gao W, Liang A, Ye W, Peng Y, Zhang L, et al. Normal leptin expression, lower adipogenic ability, decreased leptin receptor and hyposensitivity to Leptin in adolescent idiopathic scoliosis. PLoS ONE. 2012;7(5):e36648.
Article
CAS
Google Scholar
Czerny B, Kaminski A, Kurzawski M, Kotrych D, Safranow K, Dziedziejko V, et al. The association of IL-1β, IL-2, and IL-6 gene polymorphisms with bone mineral density and osteoporosis in postmenopausal women. Eur J Obstet Gynecol Reprod Biol. 2010;149(1):82–5.
Article
CAS
Google Scholar
Rachoń D, Myśliwska J, Suchecka-Rachoń K, Semetkowska-Jurkiewicz B, Zorena K, Łysiak-Szydłowska W. Serum interleukin-6 levels and bone mineral density at the femoral neck in post-menopausal women with type 1 diabetes. Diabet Med. 2003;20(6):475–80.
Article
Google Scholar
Battaglia S, Dumoucel S, Chesneau J, Heymann MF, Picarda G, Gouin F, et al. Impact of oncopediatric dosing regimen of zoledronic acid on bone growth: preclinical studies and case report of an osteosarcoma pediatric patient. J Bone Miner Res. 2011;26(10):2439–51.
Article
CAS
Google Scholar
Aspenberg P, Schilcher J. Atypical femoral fractures, bisphosphonates, and mechanical stress. Curr Osteoporos Rep. 2014;12(2):189–93.
Article
Google Scholar
Lézot F, Chesneau J, Navet B, Gobin B, Amiaud J, Choi Y, et al. Skeletal consequences of RANKL-blocking antibody (IK22-5) injections during growth: mouse strain disparities and synergic effect with zoledronic acid. Bone. 2015;73:51–9.
Article
Google Scholar
Cromer B, Harel Z. Adolescents: at increased risk for osteoporosis? Clin Pediatr. 2000;39(10):565–74.
Article
CAS
Google Scholar
Ondrak KS, Morgan DW. Physical activity, calcium intake and bone health in children and adolescents. Sports Med. 2007;37(7):587–600.
Article
Google Scholar
Ferrari S, Bianchi ML, Eisman JA, Foldes AJ, Adami S, Wahl DA, et al. Osteoporosis in young adults: pathophysiology, diagnosis, and management. Osteoporos Int. 2012;23(12):2735–48.
Article
CAS
Google Scholar
Yuan Y, Chen X, Zhang L, Wu J, Guo J, Zou D, et al. The roles of exercise in bone remodeling and in prevention and treatment of osteoporosis. Prog Biophys Mol Biol. 2016;122(2):122–30.
Article
Google Scholar
Gómez-Bruton A, Matute-Llorente Á, González-Agüero A, Casajús JA, Vicente-Rodríguez G. Plyometric exercise and bone health in children and adolescents: a systematic review. World J Pediatr. 2017;13(2):112–21.
Article
Google Scholar
Miyagi M, Saito W, Imura T, Nakazawa T, Shirasawa E, Kawakubo A, et al. Body composition in Japanese girls with adolescent idiopathic scoliosis. Spine Surg Relat Res. 2021;5(2):68–74.
Article
Google Scholar
Hartman C, Hochberg Z, Shamir R. Osteoporosis in pediatrics. IMAJ-RAMAT GAN-. 2003;5(7):509–15.
Google Scholar
Bahrami A, Sadeghnia HR, Tabatabaeizadeh SA, Bahrami-Taghanaki H, Behboodi N, Esmaeili H, et al. Genetic and epigenetic factors influencing vitamin D status. J Cell Physiol. 2018;233(5):4033–43.
Article
CAS
Google Scholar
Alessa HB, Chomistek AK, Hankinson SE, Barnett JB, Rood J, Matthews CE, et al. objective measures of physical activity and cardiometabolic and endocrine biomarkers. Med Sci Sports Exerc. 2017;49(9):1817–25.
Article
CAS
Google Scholar
Blüher S, Panagiotou G, Petroff D, Markert J, Wagner A, Klemm T, et al. Effects of a 1-year exercise and lifestyle intervention on irisin, adipokines, and inflammatory markers in obese children. Obesity. 2014;22(7):1701–8.
Article
Google Scholar
Bartolozzi E. The natural approach to osteoporosis. Clin Cases Miner Bone Metab. 2015;12(2):111–5.
Google Scholar
Fang Y, Zhu J, Fan J, Sun L, Cai S, Fan C, et al. Dietary Inflammatory Index in relation to bone mineral density, osteoporosis risk and fracture risk: a systematic review and meta-analysis. Osteoporos Int. 2021;32(4):633–43.
Article
CAS
Google Scholar
Bianchi ML. Osteoporosis in children and adolescents. Bone. 2007;41(4):486–95.
Article
Google Scholar
Bishop N, Arundel P, Clark E, Dimitri P, Farr J, Jones G, et al. Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2013 Pediatric Official Positions. J Clin Densitom. 2014;17(2):275–80.
Article
Google Scholar