Goldstein CL, Chutkan NB, Choma TJ, Orr RD. Management of the elderly with vertebral compression fractures. Neurosurgery. 2015;77(Suppl 4):S33-45. https://doi.org/10.1227/NEU.0000000000000947.
Article
PubMed
Google Scholar
Buchbinder R, Golmohammadi K, Johnston RV, Owen RJ, Homik J, Jones A, et al. Percutaneous vertebroplasty for osteoporotic vertebral compression fracture. Cochrane Database Syst Rev. 2018;4:CD006349.
PubMed
Google Scholar
Hoyt D, Urits I, Orhurhu V, Orhurhu MS, Callan J, Powell J, et al. Current concepts in the management of vertebral compression fractures. Curr Pain Headache Rep. 2020;24:16. https://doi.org/10.1007/s11916-020-00849-9.
Article
PubMed
Google Scholar
Garg B, Dixit V, Batra S, Malhotra R, Sharan A. Non-surgical management of acute osteoporotic vertebral compression fracture: a review. J Clin Orthop Trauma. 2017;8:131–8. https://doi.org/10.1016/j.jcot.2017.02.001.
Article
PubMed
PubMed Central
Google Scholar
Barrett TJ, Distel E, Murphy AJ, Hu J, Garshick MS, Ogando Y, et al. Apolipoprotein AI promotes atherosclerosis regression in diabetic mice by suppressing myelopoiesis and plaque inflammation. Circulation. 2019;140:1170–84. https://doi.org/10.1161/CIRCULATIONAHA.119.039476.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aparisi F. Vertebroplasty and kyphoplasty in vertebral osteoporotic fractures. Semin Musculoskelet Radiol. 2016;20:382–91. https://doi.org/10.1055/s-0036-1592431.
Article
PubMed
Google Scholar
Jang JS, Kim DY, Lee SH. Efficacy of percutaneous vertebroplasty in the treatment of intravertebral pseudarthrosis associated with noninfected avascular necrosis of the vertebral body. Spine (Phila Pa 1976). 2003;28:1588–92.
Article
Google Scholar
Yi X, Lu H, Tian F, Wang Y, Li C, Liu H, et al. Recompression in new levels after percutaneous vertebroplasty and kyphoplasty compared with conservative treatment. Arch Orthop Trauma Surg. 2014;134:21–30. https://doi.org/10.1007/s00402-013-1886-3.
Article
PubMed
Google Scholar
Staples MP, Howe BM, Ringler MD, Mitchell P, Wriedt CH, Wark JD, et al. New vertebral fractures after vertebroplasty: 2-year results from a randomised controlled trial. Arch Osteoporos. 2015;10:229. https://doi.org/10.1007/s11657-015-0229-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao J, Kong L, Meng F, Zhang Y, Shen Y. Risk factors for new vertebral compression fractures after vertebroplasty: a meta-analysis. ANZ J Surg. 2016;86:549–54. https://doi.org/10.1111/ans.13428.
Article
PubMed
Google Scholar
Kim SH, Kang HS, Choi JA, Ahn JM. Risk factors of new compression fractures in adjacent vertebrae after percutaneous vertebroplasty. Acta Radiol. 2004;45:440–5. https://doi.org/10.1080/02841850410005615.
Article
CAS
PubMed
Google Scholar
Zhang Z, Fan J, Ding Q, Wu M, Yin G. Risk factors for new osteoporotic vertebral compression fractures after vertebroplasty: a systematic review and meta-analysis. J Spinal Disord Tech. 2013;26:E150–7. https://doi.org/10.1097/BSD.0b013e31827412a5.
Article
PubMed
Google Scholar
Tournadre A, Vial G, Capel F, Soubrier M, Boirie Y. Sarcopenia. Joint Bone Spine. 2019;86:309–14. https://doi.org/10.1016/j.jbspin.2018.08.001.
Article
PubMed
Google Scholar
Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc. 2014;15:95–101. https://doi.org/10.1016/j.jamda.2013.11.025.
Article
PubMed
Google Scholar
Dodds RM, Roberts HC, Cooper C, Sayer AA. The epidemiology of sarcopenia. J Clin Densitom. 2015;18:461–6. https://doi.org/10.1016/j.jocd.2015.04.012.
Article
PubMed
PubMed Central
Google Scholar
Reginster JY, Beaudart C, Buckinx F, Bruyère O. Osteoporosis and sarcopenia: two diseases or one? Curr Opin Clin Nutr Metab Care. 2016;19:31–6. https://doi.org/10.1097/MCO.0000000000000230.
Article
PubMed
Google Scholar
Edwards MH, Dennison EM, Aihie Sayer A, Fielding R, Cooper C. Osteoporosis and sarcopenia in older age. Bone. 2015;80:126–30. https://doi.org/10.1016/j.bone.2015.04.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greco EA, Pietschmann P, Migliaccio S. Osteoporosis and sarcopenia increase frailty syndrome in the elderly. Front Endocrinol (Lausanne). 2019;10:255. https://doi.org/10.3389/fendo.2019.00255.
Article
Google Scholar
Hebert JJ, Kjaer P, Fritz JM, Walker BF. The relationship of lumbar multifidus muscle morphology to previous, current, and future low back pain: a 9-year population-based prospective cohort study. Spine (Phila Pa 1976). 2014;39:1417–25. https://doi.org/10.1097/BRS.0000000000000424.
Article
Google Scholar
Yagi M, Hosogane N, Watanabe K, Asazuma T, Matsumoto M, Keio Spine Research Group. The paravertebral muscle and psoas for the maintenance of global spinal alignment in patient with degenerative lumbar scoliosis. Spine J. 2016;16:451–8, doi:https://doi.org/10.1016/j.spinee.2015.07.001.
Sun D, Liu P, Cheng J, Ma Z, Liu J, Qin T. Correlation between intervertebral disc degeneration, paraspinal muscle atrophy, and lumbar facet joints degeneration in patients with lumbar disc herniation. BMC Musculoskelet Disord. 2017;18:167. https://doi.org/10.1186/s12891-017-1522-4.
Article
PubMed
PubMed Central
Google Scholar
Faur C, Patrascu JM, Haragus H, Anglitoiu B. Correlation between multifidus fatty atrophy and lumbar disc degeneration in low back pain. BMC Musculoskelet Disord. 2019;20:414. https://doi.org/10.1186/s12891-019-2786-7.
Article
PubMed
PubMed Central
Google Scholar
Wang WF, Lin CW, Xie CN, Liu HT, Zhu MY, Huang KL, et al. The association between sarcopenia and osteoporotic vertebral compression refractures. Osteoporos Int. 2019;30:2459–67. https://doi.org/10.1007/s00198-019-05144-x.
Article
CAS
PubMed
Google Scholar
Eguchi Y, Toyoguchi T, Orita S, Shimazu K, Inage K, Fujimoto K, et al. Reduced leg muscle mass and lower grip strength in women are associated with osteoporotic vertebral compression fractures. Arch Osteoporos. 2019;14:112. https://doi.org/10.1007/s11657-019-0668-0.
Article
PubMed
Google Scholar
Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17:1726–33. https://doi.org/10.1007/s00198-006-0172-4.
Article
CAS
PubMed
Google Scholar
Yuan HA, Brown CW, Phillips FM. Osteoporotic spinal deformity: a biomechanical rationale for the clinical consequences and treatment of vertebral body compression fractures. J Spinal Disord Tech. 2004;17:236–42. https://doi.org/10.1097/00024720-200406000-00012.
Article
PubMed
Google Scholar
Chen Z, Chen Z, Wu Y, Wu Y, Ning S, Ning S, et al. Risk factors of secondary vertebral compression fracture After percutaneous vertebroplasty or Kyphoplasty: A retrospective study of 650 patients. Med Sci Monit. 2019;25:9255–61. https://doi.org/10.12659/MSM.915312.
Article
PubMed
PubMed Central
Google Scholar
Li X, Lou X, Lin X, Du J. Refracture of osteoporotic vertebral body concurrent with cement fragmentation at the previously treated vertebral level after balloon kyphoplasty: a case report. Osteoporos Int. 2014;25:1647–50. https://doi.org/10.1007/s00198-014-2626-4.
Article
PubMed
Google Scholar
Feng L, Feng C, Chen J, Wu Y, Shen JM. The risk factors of vertebral refracture after kyphoplasty in patients with osteoporotic vertebral compression fractures: a study protocol for a prospective cohort study. BMC Musculoskelet Disord. 2018;19:195. https://doi.org/10.1186/s12891-018-2123-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baek SW, Kim C, Chang H. The relationship between the spinopelvic balance and the incidence of adjacent vertebral fractures following percutaneous vertebroplasty. Osteoporos Int. 2015;26:1507–13. https://doi.org/10.1007/s00198-014-3021-x.
Article
PubMed
Google Scholar
Lin WC, Lee YC, Lee CH, Kuo YL, Cheng YF, Lui CC, et al. Refractures in cemented vertebrae after percutaneous vertebroplasty: a retrospective analysis. Eur Spine J. 2008;17:592–9. https://doi.org/10.1007/s00586-007-0564-y.
Article
PubMed
PubMed Central
Google Scholar
Yu WB, Jiang XB, Liang D, Xu WX, Ye LQ, Wang J. Risk factors and score for recollapse of the augmented vertebrae after percutaneous vertebroplasty in osteoporotic vertebral compression fractures. Osteoporos Int. 2019;30:423–30. https://doi.org/10.1007/s00198-018-4754-8.
Article
CAS
PubMed
Google Scholar
Baroud G, Vant C, Wilcox R. Long-term effects of vertebroplasty: adjacent vertebral fractures. J Long Term Eff Med Implants. 2006;16:265–80. https://doi.org/10.1615/jlongtermeffmedimplants.v16.i4.10.
Article
PubMed
Google Scholar
Epidemiologic and methodologic problems in determining nutritional status of older persons. Proceedings of the a conference. Albuquerque, New Mexico, October 19–21, 1988. Am J Clin Nutr. 1989;50:1121–235.
Drey M, Sieber CC, Bertsch T, Bauer JM, Schmidmaier R, FiAT intervention group. Osteosarcopenia is more than sarcopenia and osteopenia alone. Aging Clin Exp Res. 2016;28:895–9, doi:https://doi.org/10.1007/s40520-015-0494-1.
Kirk B, Zanker J, Duque G. Osteosarcopenia: epidemiology, diagnosis, and treatment-facts and numbers. J Cachexia Sarcopenia Muscle. 2020;11:609–18. https://doi.org/10.1002/jcsm.12567.
Article
PubMed
PubMed Central
Google Scholar
Clynes MA, Gregson CL, Bruyère O, Cooper C, Dennison EM. Osteosarcopenia: where osteoporosis and sarcopenia collide. Rheumatol (Oxf Engl). 2021;60:529–37. https://doi.org/10.1093/rheumatology/keaa755.
Article
CAS
Google Scholar
Yeung SSY, Reijnierse EM, Pham VK, Trappenburg MC, Lim WK, Meskers CGM, et al. Sarcopenia and its association with falls and fractures in older adults: A systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2019;10:485–500. https://doi.org/10.1002/jcsm.12411.
Article
PubMed
PubMed Central
Google Scholar
Binkley N, Buehring B. Beyond FRAX: it’s time to consider “sarco-osteopenia.” J Clin Densitom. 2009;12:413–6. https://doi.org/10.1016/j.jocd.2009.06.004.
Article
PubMed
Google Scholar
Nachemson A. The load on lumbar disks in different positions of the body. Clin Orthop Relat Res. 1966;45:107–22.
Article
CAS
PubMed
Google Scholar
Wang W, Sun Z, Li W, Chen Z. The effect of paraspinal muscle on functional status and recovery in patients with lumbar spinal stenosis. J Orthop Surg Res. 2020;15:235. https://doi.org/10.1186/s13018-020-01751-1.
Article
PubMed
PubMed Central
Google Scholar
Hiyama A, Katoh H, Sakai D, Tanaka M, Sato M, Watanabe M. The correlation analysis between sagittal alignment and cross-sectional area of paraspinal muscle in patients with lumbar spinal stenosis and degenerative spondylolisthesis. BMC Musculoskelet Disord. 2019;20:352. https://doi.org/10.1186/s12891-019-2733-7.
Article
PubMed
PubMed Central
Google Scholar
Huang CWC, Tseng IJ, Yang SW, Lin YK, Chan WP. Lumbar muscle volume in postmenopausal women with osteoporotic compression fractures: quantitative measurement using MRI. Eur Radiol. 2019;29:4999–5006. https://doi.org/10.1007/s00330-019-06034-w.
Article
PubMed
Google Scholar
Takahashi S, Hoshino M, Takayama K, Sasaoka R, Tsujio T, Yasuda H, et al. The natural course of the paravertebral muscles after the onset of osteoporotic vertebral fracture. Osteoporos Int. 2020;31:1089–95. https://doi.org/10.1007/s00198-020-05338-8.
Article
CAS
PubMed
Google Scholar
Katzman WB, Huang MH, Lane NE, Ensrud KE, Kado DM. Kyphosis and decline in physical function over 15 years in older community-dwelling women: the Study of Osteoporotic Fractures. J Gerontol A Biol Sci Med Sci. 2013;68:976–83. https://doi.org/10.1093/gerona/glt009.
Article
CAS
PubMed
PubMed Central
Google Scholar