Giordano BL, McDonnell J, McAdams S. Hearing living symbols and nonliving icons: category specificities in the cognitive processing of environmental sounds. Brain Cogn. 2010;73:7–19. https://doi.org/10.1016/j.bandc.2010.01.005.
Article
PubMed
Google Scholar
Grassi M, Pastore M, Lemaitre G. Looking at the world with your ears: how do we get the size of an object from its sound? Acta Psychol. 2013;143:96–104. https://doi.org/10.1016/j.actpsy.2013.02.005.
Article
Google Scholar
Houben MMJ, Kohlrausch A, Hermes DJ. Perception of the size and speed of rolling balls by sound. Speech Comm. 2004;43:331–45. https://doi.org/10.1016/j.specom.2004.03.004.
Article
Google Scholar
Houix O, Lemaitre G, Misdariis N, Susini P, Urdapilleta I. A lexical analysis of environmental sound categories. J Exp Psychol Appl. 2012;18:52–80. https://doi.org/10.1037/a0026240.
Article
PubMed
Google Scholar
Bangert M, Peschel T, Schlaug G, Rotte M, Drescher D, Hinrichs H, et al. Shared networks for auditory and motor processing in professional pianists: evidence from fMRI conjunction. Neuroimage. 2006;30:917–26. https://doi.org/10.1016/j.neuroimage.2005.10.044.
Article
PubMed
Google Scholar
Haslinger B, Erhard P, Altenmüller E, Schroeder U, Boecker H, Ceballos-Baumann AO. Transmodal sensorimotor networks during action observation in professional pianists. J Cogn Neurosci. 2005;17:282–93. https://doi.org/10.1162/0898929053124893.
Article
CAS
PubMed
Google Scholar
Lahav A, Saltzman E, Schlaug G. Action representation of sound: audiomotor recognition network while listening to newly acquired actions. J Neurosci. 2007;27:308–14. https://doi.org/10.1523/JNEUROSCI.4822-06.2007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pizzamiglio L, Aprile T, Spitoni G, Pitzalis S, Bates E, D'Amico S, et al. Separate neural systems for processing action- or non-action-related sounds. Neuroimage. 2005;24:852–61. https://doi.org/10.1016/j.neuroimage.2004.09.025.
Article
CAS
PubMed
Google Scholar
Chen JL, Penhune VB, Zatorre RJ. Listening to musical rhythms recruits motor regions of the brain. Cereb Cortex. 2008;18:2844–54. https://doi.org/10.1093/cercor/bhn042.
Article
PubMed
Google Scholar
Justen C, Herbert C, Werner K, Raab M. Self vs. other: neural correlates underlying agent identification based on unimodal auditory information as revealed by electrotomography (sLORETA). Neuroscience. 2014;259:25–34. https://doi.org/10.1016/j.neuroscience.2013.11.042.
Article
CAS
PubMed
Google Scholar
Kennel C, Hohmann T, Raab M. Action perception via auditory information: agent identification and discrimination with complex movement sounds. J Cogn Psychol. 2014;26:157–65. https://doi.org/10.1080/20445911.2013.869226.
Article
Google Scholar
Murgia M, Hohmann T, Galmonte A, Raab M, Agostini T. Recognising one's own motor actions through sound: the role of temporal factors. Perception. 2012;41:976–87. https://doi.org/10.1068/p7227.
Article
PubMed
Google Scholar
Sevdalis V, Keller PE. Know thy sound: perceiving self and others in musical contexts. Acta Psychol. 2014;152:67–74. https://doi.org/10.1016/j.actpsy.2014.07.002.
Article
Google Scholar
Maes P-J, Leman M, Palmer C, Wanderley MM. Action-based effects on music perception. Front Psychol. 2014;4:1008. https://doi.org/10.3389/fpsyg.2013.01008.
Article
PubMed
PubMed Central
Google Scholar
Parise CV, Knorre K, Ernst MO. Natural auditory scene statistics shapes human spatial hearing. Proc Natl Acad Sci U S A. 2014;111:6104–8. https://doi.org/10.1073/pnas.1322705111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rusconi E, Kwan B, Giordano BL, Umiltà C, Butterworth B. Spatial representation of pitch height: the SMARC effect. Cognition. 2006;99:113–29. https://doi.org/10.1016/j.cognition.2005.01.004.
Article
PubMed
Google Scholar
Sievers B, Polansky L, Casey M, Wheatley T. Music and movement share a dynamic structure that supports universal expressions of emotion. Proc Natl Acad Sci U S A. 2013;110:70–5. https://doi.org/10.1073/pnas.1209023110.
Article
PubMed
Google Scholar
Kennel C, Pizzera A, Hohmann T, Schubotz RI, Murgia M, Agostini T, et al. The perception of natural and modulated movement sounds. Perception. 2014;43:796–804. https://doi.org/10.1068/p7643.
Article
PubMed
Google Scholar
Murgia M, Santoro I, Tamburini G, Prpic V, Sors F, Galmonte A, et al. Ecological sounds affect breath duration more than artificial sounds. Psychol Res. 2016;80:76–81. https://doi.org/10.1007/s00426-015-0647-z.
Article
PubMed
Google Scholar
Pizzera A, Hohmann T, Streese L, Habbig A, Raab M. Long-term effects of acoustic reafference training (ART). Eur J Sport Sci. 2017;17:1279–88. https://doi.org/10.1080/17461391.2017.1381767.
Article
PubMed
Google Scholar
Ferrigno C, Stoller IS, Shakoor N, Thorp LE, Wimmer MA. The feasibility of using augmented auditory feedback from a pressure detecting insole to reduce the knee adduction moment: a proof of concept study. J Biomech Eng. 2016;138:21014. https://doi.org/10.1115/1.4032123.
Article
Google Scholar
He J, Lippmann K, Shakoor N, Ferrigno C, Wimmer MA. Unsupervised gait retraining using a wireless pressure-detecting shoe insole. Gait Posture. 2019;70:408–13. https://doi.org/10.1016/j.gaitpost.2019.03.021.
Article
PubMed
Google Scholar
Wentink EC, Talsma-Kerkdijk EJ, Rietman HS, Veltink P. Feasibility of error-based electrotactile and auditive feedback in prosthetic walking. Prosthetics Orthot Int. 2015;39:255–9. https://doi.org/10.1177/0309364613520319.
Article
Google Scholar
Song G-B, Ryu HJ. Effects of gait training with rhythmic auditory stimulation on gait ability in stroke patients. J Phys Ther Sci. 2016;28:1403–6. https://doi.org/10.1589/jpts.28.1403.
Article
PubMed
PubMed Central
Google Scholar
Thaut MH, McIntosh KW, McIntosh GC, Hoemberg V. Auditory rhythmicity enhances movement and speech motor control in patients with Parkinson's disease; 2001.
Google Scholar
Willems AM, Nieuwboer A, Chavret F, Desloovere K, Dom R, Rochester L, et al. The use of rhythmic auditory cues to influence gait in patients with Parkinson's disease, the differential effect for freezers and non-freezers, an explorative study. Disabil Rehabil. 2006;28:721–8. https://doi.org/10.1080/09638280500386569.
Article
CAS
PubMed
Google Scholar
Wittwer JE, Webster KE, Hill K. Rhythmic auditory cueing to improve walking in patients with neurological conditions other than Parkinson's disease - what is the evidence? Disabil Rehabil. 2013;35:164–76. https://doi.org/10.3109/09638288.2012.690495.
Article
PubMed
Google Scholar
Dyer JF, Stapleton P, Rodger MWM. Advantages of melodic over rhythmic movement sonification in bimanual motor skill learning. Exp Brain Res. 2017;235:3129–40. https://doi.org/10.1007/s00221-017-5047-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dyer JF, Stapleton P, Rodger M. Mapping Sonification for perception and action in motor skill learning. Front Neurosci. 2017;11:463. https://doi.org/10.3389/fnins.2017.00463.
Article
PubMed
PubMed Central
Google Scholar
Effenberg AO, Fehse U, Schmitz G, Krueger B, Mechling H. Movement Sonification: effects on motor learning beyond rhythmic adjustments. Front Neurosci. 2016;10:219. https://doi.org/10.3389/fnins.2016.00219.
Article
PubMed
PubMed Central
Google Scholar
Effenberg AO, Schmitz G. Acceleration and deceleration at constant speed: systematic modulation of motion perception by kinematic sonification. Ann N Y Acad Sci. 2018;1425:52–69. https://doi.org/10.1111/nyas.13693.
Article
PubMed
Google Scholar
Reh J, Hwang T-H, Schmitz G, Effenberg AO. Dual mode gait Sonification for rehabilitation after unilateral hip Arthroplasty. Brain Sci. 2019. https://doi.org/10.3390/brainsci9030066.
Reh J, Schmitz G, Hwang T-H, Effenberg AO. Acoustic feedback in gait rehabilitation—pre-post effects in patients with unilateral hip Arthroplasty. Front Sports Act Living. 2021. https://doi.org/10.3389/fspor.2021.654546.
Schmitz G, Effenberg AO. Perceptual effects of auditory information about own and other movements; 2012. p. 2168–5126.
Google Scholar
Nikmaram N, Scholz DS, Großbach M, Schmidt SB, Spogis J, Belardinelli P, et al. Musical Sonification of arm movements in stroke rehabilitation yields limited benefits. Front Neurosci. 2019;13:1378. https://doi.org/10.3389/fnins.2019.01378.
Article
PubMed
PubMed Central
Google Scholar
Scholz DS, Rhode S, Großbach M, Rollnik J, Altenmüller E. Moving with music for stroke rehabilitation: a sonification feasibility study. Ann N Y Acad Sci. 2015;1337:69–76. https://doi.org/10.1111/nyas.12691.
Article
PubMed
Google Scholar
van Vugt FT, Kafczyk T, Kuhn W, Rollnik JD, Tillmann B, Altenmüller E. The role of auditory feedback in music-supported stroke rehabilitation: a single-blinded randomised controlled intervention. Restor Neurol Neurosci. 2016;34:297–311. https://doi.org/10.3233/RNN-150588.
Article
PubMed
Google Scholar
Schaffert N, Mattes K, Effenberg AO. In: Bresin R, Hermann T, Hunt A, editors. Listen to the boat motion: acoustic information for elite rowers; 2010. p. 31–8.
Google Scholar
Schaffert N, Mattes K. Designing an acoustic feedback system for on-water rowing training. Int J Comput Sci Sport. 2011;10(2):71–6.
Hasegawa S, Ishijima S, Kato F, Mitake H, Sato M. Realtime sonification of the center of gravity for skiing. Megève, New York: Association for Computing Machinery; 2012. p. 1–4. https://doi.org/10.1145/2160125.2160136.
Book
Google Scholar
O'Brien B, Juhas B, Bieńkiewicz M, Buloup F, Bringoux L, Bourdin C. Sonification of golf putting gesture reduces swing movement variability in novices. Res Q Exerc Sport. 2021;92:301–10. https://doi.org/10.1080/02701367.2020.1726859.
Article
PubMed
Google Scholar
Schaffert N, Godbout A, Schlueter S, Mattes K. Towards an application of interactive sonification for the forces applied on the pedals during cycling on the Wattbike ergometer. Displays. 2017;50:41–8. https://doi.org/10.1016/j.displa.2017.09.004.
Article
Google Scholar
Cesarini D, Hermann T, Ungerechts B. In: Stockmann T, Metatla O, Macdonald D, editors. A real-time auditory biofeedback system for sports swimming. New York: International Community for Auditory Display (ICAD); 2014.
Google Scholar
Mezzarobba S, Grassi M, Pellegrini L, Catalan M, Kruger B, Furlanis G, et al. Action observation plus Sonification. A novel therapeutic protocol for Parkinson's patient with freezing of gait. Front Neurol. 2017;8:723. https://doi.org/10.3389/fneur.2017.00723.
Article
PubMed
Google Scholar
Scholz DS, Rohde S, Nikmaram N, Brückner H-P, Großbach M, Rollnik JD, et al. Sonification of arm movements in stroke rehabilitation - a novel approach in neurologic music therapy. Front Neurol. 2016;7:106. https://doi.org/10.3389/fneur.2016.00106.
Article
PubMed
PubMed Central
Google Scholar
Thaut MH, Rice RR, Braun Janzen T, Hurt-Thaut CP, McIntosh GC. Rhythmic auditory stimulation for reduction of falls in Parkinson's disease: a randomized controlled study. Clin Rehabil. 2019;33:34–43. https://doi.org/10.1177/0269215518788615.
Article
PubMed
Google Scholar
Chen JL, Fujii S, Schlaug G. The use of augmented auditory feedback to improve arm reaching in stroke: a case series. Disabil Rehabil. 2016;38:1115–24. https://doi.org/10.3109/09638288.2015.1076530.
Article
PubMed
Google Scholar
Schmitz G, Bergmann J, Effenberg AO, Krewer C, Hwang T-H, Müller F. Movement Sonification in stroke rehabilitation. Front Neurol. 2018;9:389. https://doi.org/10.3389/fneur.2018.00389.
Article
PubMed
PubMed Central
Google Scholar
Ghai S, Ghai I, Schmitz G, Effenberg AO. Effect of rhythmic auditory cueing on parkinsonian gait: a systematic review and meta-analysis. Sci Rep. 2018;8:506. https://doi.org/10.1038/s41598-017-16232-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gomez-Andres A, Grau-Sánchez J, Duarte E, Rodriguez-Fornells A, Tajadura-Jiménez A. Enriching footsteps sounds in gait rehabilitation in chronic stroke patients: a pilot study. Ann N Y Acad Sci. 2020;1467:48–59. https://doi.org/10.1111/nyas.14276.
Article
PubMed
Google Scholar
Horsak B, Dlapka R, Iber M, Gorgas A-M, Kiselka A, Gradl C, et al. SONIGait: a wireless instrumented insole device for real-time sonification of gait. J Multimodal User Interfaces. 2016;10:195–206. https://doi.org/10.1007/s12193-016-0216-9.
Article
Google Scholar
Tajadura-Jiménez A, Basia M, Deroy O, Fairhurst M, Marquardt N, Bianchi-Berthouze N. In: Lee MH, Cha S, Nam TJ, editors. As light as your footsteps: altering walking sounds to change perceived body weight, emotional state and gait; 2015. p. 2943–52. https://doi.org/10.1145/2702123.2702374.
Young WR, Shreve L, Quinn EJ, Craig C, Bronte-Stewart H. Auditory cueing in Parkinson's patients with freezing of gait. What matters most: action-relevance or cue-continuity? Neuropsychologia. 2016;87:54–62. https://doi.org/10.1016/j.neuropsychologia.2016.04.034.
Article
PubMed
Google Scholar
Brodie MAD, Dean RT, Beijer TR, Canning CG, Smith ST, Menant JC, et al. Symmetry matched auditory cues improve gait steadiness in most people with Parkinson's disease but not in healthy older people. J Parkinsons Dis. 2015;5:105–16. https://doi.org/10.3233/JPD-140430.
Article
PubMed
Google Scholar
Dotov DG, Bayard S, Cochen de Cock V, Geny C, Driss V, Garrigue G, et al. Biologically-variable rhythmic auditory cues are superior to isochronous cues in fostering natural gait variability in Parkinson's disease. Gait Posture. 2017;51:64–9. https://doi.org/10.1016/j.gaitpost.2016.09.020.
Article
CAS
PubMed
Google Scholar
Ghai S, Ghai I, Effenberg AO. Effect of rhythmic auditory cueing on aging gait: a systematic review and meta-analysis. Aging Dis. 2018;9:901–23. https://doi.org/10.14336/AD.2017.1031.
Article
PubMed
PubMed Central
Google Scholar
Rodger MWM, Young WR, Craig CM. Synthesis of walking sounds for alleviating gait disturbances in Parkinson's disease. IEEE Trans Neural Syst Rehabil Eng. 2014;22:543–8. https://doi.org/10.1109/TNSRE.2013.2285410.
Article
PubMed
Google Scholar
Wright RL, Elliott MT. Stepping to phase-perturbed metronome cues: multisensory advantage in movement synchrony but not correction. Front Hum Neurosci. 2014;8:724. https://doi.org/10.3389/fnhum.2014.00724.
Article
PubMed
PubMed Central
Google Scholar
Ford MP, Malone LA, Nyikos I, Yelisetty R, Bickel CS. Gait training with progressive external auditory cueing in persons with Parkinson's disease. Arch Phys Med Rehabil. 2010;91:1255–61. https://doi.org/10.1016/j.apmr.2010.04.012.
Article
PubMed
Google Scholar
Roerdink M, Bank PJM, Peper CLE, Beek PJ. Walking to the beat of different drums: practical implications for the use of acoustic rhythms in gait rehabilitation. Gait Posture. 2011;33:690–4. https://doi.org/10.1016/j.gaitpost.2011.03.001.
Article
PubMed
Google Scholar
Blauert J. Spatial hearing: the psychophysics of human sound localization. 6th ed. Cambridge: MIT Press; 1996.
Book
Google Scholar
Grassi M. Do we hear size or sound? Balls dropped on plates. Percept Psychophys. 2005;67:274–84. https://doi.org/10.3758/BF03206491.
Article
PubMed
Google Scholar
Lipscomb SD, Kim EM. Perceived match between visual parameters and auditory correlates: an experimental multimedia investigation. In: Society for Music Perception and Cognition. Evanston: Proceedings of the 8th International Conference on Music Perception and Cognition; 2004. p. 72–5.
Eitan Z, Schupak A, Marks LE. In: Miyazaki K, Hiraga Y, Adachi M, Nakajima Y, Tsuzaki M, editors. Louder is higher: cross-modal interaction of loudness change and vertical motion in speeded classification. Adelaide: CausalProductions; 2008.
Google Scholar
Eitan Z. How pitch and loudness shape musical space and motion. In: Tan S-L, Cohen AJ, Lipscomb SD, Kendall RA, editors. The psychology of music in multimedia. Oxford: Oxford Univ. Press; 2013. p. 165–91.
Chapter
Google Scholar
Darling M, Huber JE. Changes to articulatory kinematics in response to loudness cues in individuals with Parkinson’s disease. J Speech Lang Hear Res. 2011;54:1247–59. https://doi.org/10.1044/1092-4388(2011/10-0024).
Article
PubMed
Google Scholar
Schaffert N, Janzen TB, Mattes K, Thaut MH. A review on the relationship between sound and movement in sports and rehabilitation. Front Psychol. 2019;10:244. https://doi.org/10.3389/fpsyg.2019.00244.
Article
PubMed
PubMed Central
Google Scholar
Vinken PM, Kröger D, Fehse U, Schmitz G, Brock H, Effenberg AO. Auditory coding of human movement kinematics. Multisens Res. 2013;26:533–52. https://doi.org/10.1163/22134808-00002435.
Article
PubMed
Google Scholar
Robinson DW, Dadson RS. A re-determination of the equal-loudness relations for pure tones. Br J Appl Phys. 1956;7:166–81. https://doi.org/10.1088/0508-3443/7/5/302.
Article
Google Scholar
Cabrera D, Tilley S. Parameters for auditory display of height and size. In: International Conference on Auditory Display. Boston: Georgia Institute of Technology; International Community on Auditory Display; 2003.
Google Scholar
Eitan Z, Granot RY. How music moves: musical parameters and listeners images of motion. Music Percept. 2006;23:221–48. https://doi.org/10.1525/mp.2006.23.3.221.
Article
Google Scholar
Kohn D, Eitan Z. Seeing sound moving: congruence of pitch and loudness with human movement and visual shape. In: Cambouropoulos E, Tsougras C, Mavromatis P, Pastiadis K, editors. ICMPC-ESCOM 2012 Joint conference: proceedings: book of abstracts, CD-ROM proceeding: School of Music Studies. Thessaloniki: Aristotle University of Thessaloniki; 2012.
Singhal P, Agarwala A, Srivastava P. In: Rogers TM, Rau M, Zhu J, Kalish C, editors. Do Pitch and Space Share Common Code?: Role of feedback in SPARC effect. Austin: CogSci; 2018.
Zerssen DV, Petermann F. Bf-SR-Die Befindlichkeits-Skala-Revidierte Fassung: Revidierte Fassung. 1. Auflage ed. Göttingen: Hogrefe; 2011.
Google Scholar
Küssner MB, Tidhar D, Prior HM, Leech-Wilkinson D. Musicians are more consistent: gestural cross-modal mappings of pitch, loudness and tempo in real-time. Front Psychol. 2014;5:789. https://doi.org/10.3389/fpsyg.2014.00789.
Article
PubMed
PubMed Central
Google Scholar
Brown AM, Kenwell ZR, Maraj BKV, Collins DF. “Go” signal intensity influences the sprint start. Med Sci Sports Exerc. 2008;40:1142–8. https://doi.org/10.1249/mss.0b013e31816770e1.
Article
PubMed
Google Scholar
Marshall L, Brandt JF. The relationship between loudness and reaction time in normal hearing listeners. Acta Otolaryngol. 1980;90:244–9. https://doi.org/10.3109/00016488009131721.
Article
CAS
PubMed
Google Scholar
Sors F, Prpic V, Santoro I, Galmonte A, Agostini T, Murgia M. Loudness, but not shot power, influences simple reaction times to soccer penalty sounds. Psihologija. 2018;51:127–41.
Article
Google Scholar
Criter RE, Gustavson M. Subjective hearing difficulty and fall risk. Am J Audiol. 2020;29:384–90. https://doi.org/10.1044/2020_AJA-20-00006.
Article
PubMed
Google Scholar
Xu D, Newell MD, Francis AL. Fall-related injuries mediate the relationship between self-reported hearing loss and mortality in middle-aged and older adults. J Gerontol A Biol Sci Med Sci. 2021;76:e213–20. https://doi.org/10.1093/gerona/glab123.
Article
PubMed
Google Scholar
Wood CC. Levels of processing in speech perception: neurophysiological and information-processing analyses. Yale: Yale University; 1973. [Unpublished doctoral dissertation]
Neuhoff JG, Kramer G, Wayand J. onification and the interaction of perceptual dimensions: Can the data get lost in the map? In: Psychology, Lafayette College. Department of, Foundation M, Psychology, Kent State University. Department of, editors. Atlanta: Georgia Institute of Technology; International Community for Auditory Display; 2000.
Google Scholar
Neuhoff JG, Wayand J, Kramer G. Pitch and loudness interact in auditory displays: can the data get lost in the map? J Exp Psychol Appl. 2002;8:17–25. https://doi.org/10.1037/1076-898X.8.1.17.
Article
PubMed
Google Scholar
Bangert M, Altenmüller EO. Mapping perception to action in piano practice: a longitudinal DC-EEG study. BMC Neurosci. 2003;4:26. https://doi.org/10.1186/1471-2202-4-26.
Article
PubMed
PubMed Central
Google Scholar
Barton B, Venezia JH, Saberi K, Hickok G, Brewer AA. Orthogonal acoustic dimensions define auditory field maps in human cortex. Proc Natl Acad Sci U S A. 2012;109:20738–43. https://doi.org/10.1073/pnas.1213381109.
Article
PubMed
PubMed Central
Google Scholar
Boemio A, Fromm S, Braun A, Poeppel D. Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nat Neurosci. 2005;8:389–95. https://doi.org/10.1038/nn1409.
Article
CAS
PubMed
Google Scholar
Giraud AL, Lorenzi C, Ashburner J, Wable J, Johnsrude I, Frackowiak R, et al. Representation of the temporal envelope of sounds in the human brain. J Neurophysiol. 2000;84:1588–98. https://doi.org/10.1152/jn.2000.84.3.1588.
Article
CAS
PubMed
Google Scholar
Clark DJ. Automaticity of walking: functional significance, mechanisms, measurement and rehabilitation strategies. Front Hum Neurosci. 2015;9:246. https://doi.org/10.3389/fnhum.2015.00246.
Article
PubMed
PubMed Central
Google Scholar