Cloward RB. The anterior approach for removal of ruptured cervical disks. J Neurosurg. 1958;15(6):602–17.
Article
CAS
PubMed
Google Scholar
Radcliff K, Coric D, Albert T. Five-year clinical results of cervical total disc replacement compared with anterior discectomy and fusion for treatment of 2-level symptomatic degenerative disc disease: a prospective, randomized, controlled, multicenter investigational device exemption clinical trial. J Neurosurg Spine. 2016;25(2):213–24.
Article
PubMed
Google Scholar
Kim LH, D'Souza M, Ho AL, Pendharkar AV, Sussman ES, Rezaii P, et al. Anterior techniques in managing cervical disc disease. Cureus. 2018;10(8):e3146.
PubMed
PubMed Central
Google Scholar
Bagby GW. Arthrodesis by the distraction-compression method using a stainless steel implant. Orthopedics. 1988;11(6):931–4.
Article
CAS
PubMed
Google Scholar
Scholz M, Schleicher P, Pabst S, Kandziora F. A zero-profile anchored spacer in multilevel cervical anterior interbody fusion: biomechanical comparison to established fixation techniques. Spine. 2015;40(7):E375–80.
Article
PubMed
Google Scholar
Yson SC, Sembrano JN, Santos ERG. Comparison of allograft and polyetheretherketone (PEEK) cage subsidence rates in anterior cervical discectomy and fusion (ACDF). J Clin Neurosci. 2017;38:118–21.
Article
CAS
PubMed
Google Scholar
Schmieder K, Wolzik-Grossmann M, Pechlivanis I, Engelhardt M, Scholz M, Harders A. Subsidence of the wing titanium cage after anterior cervical interbody fusion: 2-year follow-up study. J Neurosurg Spine. 2006;4(6):447–53.
Article
PubMed
Google Scholar
Phan K, Pelletier MH, Rao PJ, Choy WJ, Walsh WR, Mobbs RJ. Integral fixation titanium/polyetheretherketone cages for cervical arthrodesis: evolution of cage design and early radiological outcomes and fusion rates. Orthop Surg. 2019;11(1):52–9.
Article
PubMed
PubMed Central
Google Scholar
Nemoto O, Asazuma T, Yato Y, Imabayashi H, Yasuoka H, Fujikawa A. Comparison of fusion rates following transforaminal lumbar interbody fusion using polyetheretherketone cages or titanium cages with transpedicular instrumentation. Eur Spine J. 2014;23(10):2150–5.
Article
PubMed
Google Scholar
Le TV, Baaj AA, Dakwar E, Burkett CJ, Murray G, Smith DA, et al. Subsidence of polyetheretherketone intervertebral cages in minimally invasive lateral retroperitoneal transpsoas lumbar interbody fusion. Spine. 2012;37(14):1268–73.
Article
PubMed
Google Scholar
Daentzer D, Willbold E, Kalla K, Bartsch I, Masalha W, Hallbaum M, et al. Bioabsorbable interbody magnesium-polymer cage: degradation kinetics, biomechanical stiffness, and histological findings from an ovine cervical spine fusion model. Spine. 2014;39(20):E1220–7.
Article
PubMed
Google Scholar
Brar HS, Platt MO, Sarntinoranont M, Martin PI, Manuel MV. Magnesium as a biodegradable and bioabsorbable material for medical implants. Jom. 2009;61(9):31–4.
Article
CAS
Google Scholar
Chakraborty Banerjee P, Al-Saadi S, Choudhary L, Harandi SE, Singh R. Magnesium implants: prospects and challenges. Materials. 2019;12(1):136.
Article
PubMed Central
CAS
Google Scholar
Liu C, Ren Z, Xu Y, Pang S, Zhao X, Zhao Y. Biodegradable magnesium alloys developed as bone repair materials: a review. Scanning. 2018;2018:9216314.
Article
PubMed
PubMed Central
Google Scholar
Zeng R-C, Qi W-C, Cui H-Z, Zhang F, Li S-Q, Han E-H. In vitro corrosion of as-extruded Mg–Ca alloys—the influence of Ca concentration. Corros Sci. 2015;96:23–31.
Article
CAS
Google Scholar
Xia D, Liu Y, Wang S, Zeng R-C, Liu Y, Zheng Y, et al. In vitro and in vivo investigation on biodegradable Mg-Li-Ca alloys for bone implant application. Sci China Mater. 2019;62(2):256–72.
Article
CAS
Google Scholar
Wang H, Guan S, Wang Y, Liu H, Wang H, Wang L, et al. In vivo degradation behavior of Ca-deficient hydroxyapatite coated Mg–Zn–Ca alloy for bone implant application. Colloids Surf B: Biointerfaces. 2011;88(1):254–9.
Article
CAS
PubMed
Google Scholar
Vickers NJ. Animal communication: when i’m calling you, will you answer too? Curr Biol. 2017;27(14):R713–5.
Article
CAS
PubMed
Google Scholar
Steinfeld B, Scott J, Vilander G, Marx L, Quirk M, Lindberg J, et al. The role of lean process improvement in implementation of evidence-based practices in behavioral health care. J Behav Health Serv Res. 2015;42(4):504–18.
Article
PubMed
Google Scholar
Jafari H, Rahimi F, Sheikhsofla Z. In vitro corrosion behavior of Mg-5Zn alloy containing low Y contents. Mater Corros. 2016;67(4):396–405.
Article
CAS
Google Scholar
Qi ZR, Zhang Q, Tan LL, Lin X, Yin Y, Wang XL, et al. Comparison of degradation behavior and the associated bone response of ZK60 and PLLA in vivo. J Biomed Mater Res A. 2014;102(5):1255–63.
Article
PubMed
CAS
Google Scholar
Lin X, Tan L, Wang Q, Zhang G, Zhang B, Yang K. In vivo degradation and tissue compatibility of ZK60 magnesium alloy with micro-arc oxidation coating in a transcortical model. Mater Sci Eng C. 2013;33(7):3881–8.
Article
CAS
Google Scholar
Gu XN, Li N, Zheng YF, Ruan L. In vitro degradation performance and biological response of a Mg–Zn–Zr alloy. Mater Sci Eng B. 2011;176(20):1778–84.
Article
CAS
Google Scholar
Yoganandan N, Kumaresan S, Pintar FA. Biomechanics of the cervical spine Part 2. Cervical spine soft tissue responses and biomechanical modeling. Clin Biomech. 2001;16(1):1–27.
Article
CAS
Google Scholar
Ganbat D, Kim YH, Kim K, Jin YJ, Park WM. Effect of mechanical loading on heterotopic ossification in cervical total disc replacement: a three-dimensional finite element analysis. Biomech Model Mechanobiol. 2016;15(5):1191–9.
Article
PubMed
Google Scholar
Lei Z, Ji X, Li N, Yang J, Zhuang Z, Rottach D. Simulated effects of head movement on contact pressures between headforms and N95 filtering facepiece respirators-part 1: headform model and validation. Ann Occup Hyg. 2014;58(9):1175–85.
PubMed
Google Scholar
Zhang QH, Teo EC, Ng HW, Lee VS. Finite element analysis of moment-rotation relationships for human cervical spine. J Biomech. 2006;39(1):189–93.
Article
PubMed
Google Scholar
Kallemeyn N, Gandhi A, Kode S, Shivanna K, Smucker J, Grosland N. Validation of a C2–C7 cervical spine finite element model using specimen-specific flexibility data. Med Eng Phys. 2010;32(5):482–9.
Article
PubMed
Google Scholar
Ha SK. Finite element modeling of multi-level cervical spinal segments (C3–C6) and biomechanical analysis of an elastomer-type prosthetic disc. Med Eng Phys. 2006;28(6):534–41.
Article
PubMed
Google Scholar
Chen W-M, Jin J, Park T, Ryu K-S, Lee S-J. Strain behavior of malaligned cervical spine implanted with metal-on-polyethylene, metal-on-metal, and elastomeric artificial disc prostheses–a finite element analysis. Clin Biomech. 2018;59:19–26.
Article
Google Scholar
Panjabi MM. Hybrid multidirectional test method to evaluate spinal adjacent-level effects. Clin Biomech. 2007;22(3):257–65.
Article
Google Scholar
Liao Z, Fogel GR, Wei N, Gu H, Liu W. Biomechanics of artificial disc replacements adjacent to a 2-level fusion in 4-level hybrid constructs: an in vitro investigation. Med Sci Monit. 2015;21:4006.
Article
PubMed
PubMed Central
Google Scholar
Gandhi AA, Kode S, DeVries NA, Grosland NM, Smucker JD, Fredericks DC. Biomechanical analysis of cervical disc replacement and fusion using single level, two level, and hybrid constructs. Spine. 2015;40(20):1578–85.
Article
PubMed
Google Scholar
Panjabi MM, Crisco JJ, Vasavada A, Oda T, Cholewicki J, Nibu K, et al. Mechanical properties of the human cervical spine as shown by three-dimensional load–displacement curves. Spine. 2001;26(24):2692–700.
Article
CAS
PubMed
Google Scholar
Liu Q, Guo Q, Yang J, Zhang P, Xu T, Cheng X, et al. Subaxial cervical intradiscal pressure and segmental kinematics following atlantoaxial fixation in different angles. World Neurosurg. 2016;87:521–8.
Article
PubMed
Google Scholar
Lee JH, Park WM, Kim YH, Jahng T-A. A biomechanical analysis of an artificial disc with a shock-absorbing core property by using whole-cervical spine finite element analysis. Spine. 2016;41(15):E893–901.
Article
PubMed
Google Scholar
Wen CE, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Asahina T. Processing of biocompatible porous Ti and Mg. Scr Mater. 2001;45(10):1147–53.
Article
CAS
Google Scholar
Wen CE, Yamada Y, Shimojima K, Chino Y, Hosokawa H, Mabuchi M. Compressibility of porous magnesium foam: dependency on porosity and pore size. Mater Lett. 2004;58(3):357–60.
Article
CAS
Google Scholar
Yazdimamaghani M, Razavi M, Vashaee D, Moharamzadeh K, Boccaccini AR, Tayebi L. Porous magnesium-based scaffolds for tissue engineering. Mater Sci Eng C. 2017;71:1253–66.
Article
CAS
Google Scholar
Byun S-H, Lim H-K, Lee S-M, Kim H-E, Kim S-M, Lee J-H. Biodegradable magnesium alloy (ZK60) with a poly (l-lactic)-acid polymer coating for maxillofacial surgery. Metals. 2020;10(6):724.
Article
CAS
Google Scholar
Ling C, Cernicchi A, Gilchrist MD, Cardiff P. Mechanical behaviour of additively-manufactured polymeric octet-truss lattice structures under quasi-static and dynamic compressive loading. Mater Des. 2019;162:106–18.
Article
CAS
Google Scholar
Gangireddy S, Komarasamy M, Faierson EJ, Mishra RS. High strain rate mechanical behavior of Ti-6Al-4V octet lattice structures additively manufactured by selective laser melting (SLM). Mater Sci Eng A. 2019;745:231–9.
Article
CAS
Google Scholar
Tancogne-Dejean T, Spierings AB, Mohr D. Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading. Acta Mater. 2016;116:14–28.
Article
CAS
Google Scholar
Dong L, Deshpande V, Wadley H. Mechanical response of Ti–6Al–4V octet-truss lattice structures. Int J Solids Struct. 2015;60:107–24.
Article
CAS
Google Scholar
Deshpande VS, Fleck NA, Ashby MF. Effective properties of the octet-truss lattice material. J Mech Phys Solids. 2001;49(8):1747–69.
Article
CAS
Google Scholar
Simon U, Augat P, Ignatius A, Claes L. Influence of the stiffness of bone defect implants on the mechanical conditions at the interface—a finite element analysis with contact. J Biomech. 2003;36(8):1079–86.
Article
CAS
PubMed
Google Scholar
Zhang Q-H, Cossey A, Tong J. Stress shielding in periprosthetic bone following a total knee replacement: effects of implant material, design and alignment. Med Eng Phys. 2016;38(12):1481–8.
Article
PubMed
Google Scholar
Chuah HG, Rahim IA, Yusof MI. Topology optimisation of spinal interbody cage for reducing stress shielding effect. Comput Methods Biomech Biomed Eng. 2010;13(3):319–26.
Article
Google Scholar
Mi ZR, Shuib S, Hassan AY, Shorki AA, Ibrahim MNM. Problem of stress shielding and improvement to the hip Implat designs: a review. J Med Sci. 2007;7:460–7.
Article
Google Scholar
Bugbee WD, Sychterz CJ, Engh CA. Bone remodeling around cementless hip implants. South Med J. 1996;89(11):1036–40.
Article
CAS
PubMed
Google Scholar
Grant JP, Oxland TR, Dvorak MF. Mapping the structural properties of the lumbosacral vertebral endplates. Spine. 2001;26(8):889–96.
Article
CAS
PubMed
Google Scholar
Wang H, Lv B. Comparison of clinical and radiographic results between posterior pedicle-based dynamic stabilization and posterior lumbar intervertebral fusion for lumbar degenerative disease: a 2-year retrospective study. World Neurosurg. 2018;114:e403–11.
Article
PubMed
Google Scholar
Schlegel K-F, Pon A. The biomechanics of posterior lumbar interbody fusion (PLIF) in spondylolisthesis. Clin Orthop Relat Res. 1985;193:115–9.
Article
Google Scholar
Goulet JA, Senunas LE, DeSilva GL, Greenfield MLVH. Autogenous iliac crest bone graft: complications and functional assessment. Clin Orthop Relat Res. 1997;339:76–81.
Article
Google Scholar