Loeser RF, Goldring SR, Scanzello CR, Goldring MB: Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012, 64 (6): 1697-1707. 10.1002/art.34453.
Article
PubMed
PubMed Central
Google Scholar
Benito MJ, Veale DJ, FitzGerald O, van den Berg WB, Bresnihan B: Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis. 2005, 64 (9): 1263-1267. 10.1136/ard.2004.025270.
Article
CAS
PubMed
PubMed Central
Google Scholar
van den Berg WB: The role of cytokines and growth factors in cartilage destruction in osteoarthritis and rheumatoid arthritis. Z Rheumatol. 1999, 58 (3): 136-141. 10.1007/s003930050163.
Article
CAS
PubMed
Google Scholar
Chevalier X: Upregulation of enzymatic activity by interleukin-1 in osteoarthritis. Biomed Pharmacother. 1997, 51 (2): 58-62. 10.1016/S0753-3322(97)87727-X.
Article
CAS
PubMed
Google Scholar
Pelletier JP, Martel-Pelletier J, Abramson SB: Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets. Arthritis Rheum. 2001, 44 (6): 1237-1247. 10.1002/1529-0131(200106)44:6<1237::AID-ART214>3.0.CO;2-F.
Article
CAS
PubMed
Google Scholar
Donahue HJ, Guilak F, Vander Molen MA, McLeod KJ, Rubin CT, Grande DA, Brink PR: Chondrocytes isolated from mature articular cartilage retain the capacity to form functional gap junctions. J Bone Miner Res. 1995, 10 (9): 1359-1364.
Article
CAS
PubMed
Google Scholar
Stains JP, Civitelli R: Gap junctions in skeletal development and function. Biochim Biophys Acta. 2005, 1719 (1–2): 69-81.
Article
CAS
PubMed
Google Scholar
Knight MM, McGlashan SR, Garcia M, Jensen CG, Poole CA: Articular chondrocytes express connexin 43 hemichannels and P2 receptors - a putative mechanoreceptor complex involving the primary cilium?. J Anat. 2009, 214 (2): 275-283. 10.1111/j.1469-7580.2008.01021.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chi SS, Rattner JB, Sciore P, Boorman R, Lo IK: Gap junctions of the medial collateral ligament: structure, distribution, associations and function. J Anat. 2005, 207 (2): 145-154. 10.1111/j.1469-7580.2005.00440.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwab W, Hofer A, Kasper M: Immunohistochemical distribution of connexin 43 in the cartilage of rats and mice. Histochem J. 1998, 30 (6): 413-419. 10.1023/A:1003220225670.
Article
CAS
PubMed
Google Scholar
Kolomytkin OV, Marino AA, Sadasivan KK, Meek WD, Wolf RE, Hall V, McCarthy KJ, Albright JA: Gap junctions in human synovial cells and tissue. J Cell Physiol. 2000, 184 (1): 110-117. 10.1002/(SICI)1097-4652(200007)184:1<110::AID-JCP12>3.0.CO;2-8.
Article
CAS
PubMed
Google Scholar
Hellio Le Graverand MP, Sciore P, Eggerer J, Rattner JP, Vignon E, Barclay L, Hart DA, Rattner JB: Formation and phenotype of cell clusters in osteoarthritic meniscus. Arthritis Rheum. 2001, 44 (8): 1808-1818. 10.1002/1529-0131(200108)44:8<1808::AID-ART318>3.0.CO;2-B.
Article
CAS
PubMed
Google Scholar
Mayan MD, Carpintero-Fernandez P, Gago-Fuentes R, Martinez-de-Ilarduya O, Wang HZ, Valiunas V, Brink P, Blanco FJ: Human articular chondrocytes express multiple gap junction proteins: differential expression of connexins in normal and osteoarthritic cartilage. Am J Pathol. 2013, 182 (4): 1337-1346. 10.1016/j.ajpath.2012.12.018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chi SS, Rattner JB, Matyas JR: Communication between paired chondrocytes in the superficial zone of articular cartilage. J Anat. 2004, 205 (5): 363-370. 10.1111/j.0021-8782.2004.00350.x.
Article
PubMed
PubMed Central
Google Scholar
Mayan MD, Gago-Fuentes R, Carpintero-Fernandez P, Fernandez-Puente P, Filgueira-Fernandez P, Goyanes N, Valiunas V, Brink PR, Goldberg GS, Blanco FJ: Articular chondrocyte network mediated by gap junctions: role in metabolic cartilage homeostasis. Ann Rheum Dis. 2013, [Epub ahead of print]
Google Scholar
Spray DC, Ye ZC, Ransom BR: Functional connexin “hemichannels”: a critical appraisal. Glia. 2006, 54 (7): 758-773. 10.1002/glia.20429.
Article
PubMed
Google Scholar
Saez JC, Retamal MA, Basilio D, Bukauskas FF, Bennett MV: Connexin-based gap junction hemichannels: gating mechanisms. Biochim Biophys Acta. 2005, 1711 (2): 215-224. 10.1016/j.bbamem.2005.01.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kar R, Batra N, Riquelme MA, Jiang JX: Biological role of connexin intercellular channels and hemichannels. Arch Biochem Biophys. 2012, 524 (1): 2-15. 10.1016/j.abb.2012.03.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Batra N, Kar R, Jiang JX: Gap junctions and hemichannels in signal transmission, function and development of bone. Biochim Biophys Acta. 2012, 1818 (8): 1909-1918. 10.1016/j.bbamem.2011.09.018.
Article
CAS
PubMed
Google Scholar
Batra N, Burra S, Siller-Jackson AJ, Gu S, Xia X, Weber GF, DeSimone D, Bonewald LF, Lafer EM, Sprague E, Schwartz MA, Jiang JX: Mechanical stress-activated integrin alpha5beta1 induces opening of connexin 43 hemichannels. Proc Natl Acad Sci U S A. 2012, 109 (9): 3359-3364. 10.1073/pnas.1115967109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buo AM, Stains JP: Gap junctional regulation of signal transduction in bone cells. FEBS Lett. 2014, 588 (8): 1315-1321. 10.1016/j.febslet.2014.01.025.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marino AA, Waddell DD, Kolomytkin OV, Meek WD, Wolf R, Sadasivan KK, Albright JA: Increased intercellular communication through gap junctions may contribute to progression of osteoarthritis. Clin Orthop Relat Res. 2004, 422: 224-232.
Article
PubMed
Google Scholar
Kolomytkin OV, Marino AA, Waddell DD, Mathis JM, Wolf RE, Sadasivan KK, Albright JA: IL-1beta-induced production of metalloproteinases by synovial cells depends on gap junction conductance. Am J Physiol Cell Physiol. 2002, 282 (6): C1254-C1260. 10.1152/ajpcell.01166.2000.
Article
CAS
PubMed
Google Scholar
Niger C, Howell FD, Stains JP: Interleukin-1beta increases gap junctional communication among synovial fibroblasts via the extracellular-signal-regulated kinase pathway. Biol Cell. 2010, 102 (1): 37-49. 10.1042/BC20090056.
Article
CAS
Google Scholar
Tonon R, D’Andrea P: The functional expression of connexin 43 in articular chondrocytes is increased by interleukin 1beta: evidence for a Ca2 + −dependent mechanism. Biorheology. 2002, 39 (1–2): 153-160.
CAS
PubMed
Google Scholar
Tonon R, D’Andrea P: Interleukin-1beta increases the functional expression of connexin 43 in articular chondrocytes: evidence for a Ca2 + −dependent mechanism. J Bone Miner Res. 2000, 15 (9): 1669-1677. 10.1359/jbmr.2000.15.9.1669.
Article
CAS
PubMed
Google Scholar
Plotkin LI, Bellido T: Beyond gap junctions: connexin43 and bone cell signaling. Bone. 2013, 52 (1): 157-166. 10.1016/j.bone.2012.09.030.
Article
CAS
PubMed
Google Scholar
Loiselle AE, Jiang JX, Donahue HJ: Gap junction and hemichannel functions in osteocytes. Bone. 2013, 54 (2): 205-212. 10.1016/j.bone.2012.08.132.
Article
CAS
PubMed
Google Scholar
Jordan M, Schallhorn A, Wurm FM: Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res. 1996, 24 (4): 596-601. 10.1093/nar/24.4.596.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beyer EC, Paul DL, Goodenough DA: Connexin43: a protein from rat heart homologous to a gap junction protein from liver. J Cell Biol. 1987, 105 (6 Pt 1): 2621-2629.
Article
CAS
PubMed
Google Scholar
Fuhlbrigge RC, Fine SM, Unanue ER, Chaplin DD: Expression of membrane interleukin 1 by fibroblasts transfected with murine pro-interleukin 1 alpha cDNA. Proc Natl Acad Sci U S A. 1988, 85 (15): 5649-5653. 10.1073/pnas.85.15.5649.
Article
CAS
PubMed
PubMed Central
Google Scholar
Niger C, Luciotti MA, Buo AM, Hebert C, Ma V, Stains JP: The regulation of Runx2 by FGF2 and connexin43 requires the inositol polyphosphate/protein kinase Cdelta cascade. J Bone Miner Res. 2013, 28 (6): 1468-1477. 10.1002/jbmr.1867.
Article
CAS
PubMed
PubMed Central
Google Scholar
Niger C, Buo AM, Hebert C, Duggan BT, Williams MS, Stains JP: ERK acts in parallel to PKCdelta to mediate the connexin43-dependent potentiation of Runx2 activity by FGF2 in MC3T3 osteoblasts. Am J Physiol Cell Physiol. 2012, 302 (7): C1035-C1044. 10.1152/ajpcell.00262.2011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamazaki T, Yokoyama T, Akatsu H, Tukiyama T, Tokiwa T: Phenotypic characterization of a human synovial sarcoma cell line, SW982, and its response to dexamethasone. In Vitro Cell Dev Biol Anim. 2003, 39 (8–9): 337-339.
Article
CAS
PubMed
Google Scholar
Kim KO, Park SY, Han CW, Chung HK, Yoo DH, Han JS: Effect of sildenafil citrate on interleukin-1beta-induced nitric oxide synthesis and iNOS expression in SW982 cells. Exp Mol Med. 2008, 40 (3): 286-293. 10.3858/emm.2008.40.3.286.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsuchida S, Arai Y, Kishida T, Takahashi KA, Honjo K, Terauchi R, Inoue H, Oda R, Mazda O, Kubo T: Silencing the expression of connexin 43 decreases inflammation and joint destruction in experimental arthritis. J Orthop Res. 2013, 31 (4): 525-530. 10.1002/jor.22263.
Article
CAS
PubMed
Google Scholar
Hebert C, Stains JP: An intact connexin43 is required to enhance signaling and gene expression in osteoblast-like cells. J Cell Biochem. 2013, 114 (11): 2542-2550. 10.1002/jcb.24603.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loiselle AE, Lloyd SA, Paul EM, Lewis GS, Donahue HJ: Inhibition of GSK-3beta rescues the impairments in bone formation and mechanical properties associated with fracture healing in osteoblast selective connexin 43 deficient mice. PLoS One. 2013, 8 (11): e81399-10.1371/journal.pone.0081399.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bivi N, Pacheco-Costa R, Brun LR, Murphy TR, Farlow NR, Robling AG, Bellido T, Plotkin LI: Absence of Cx43 selectively from osteocytes enhances responsiveness to mechanical force in mice. J Orthop Res. 2013, 31 (7): 1075-1081. 10.1002/jor.22341.
Article
CAS
PubMed
Google Scholar
Bivi N, Lezcano V, Romanello M, Bellido T, Plotkin LI: Connexin43 interacts with betaarrestin: a pre-requisite for osteoblast survival induced by parathyroid hormone. J Cell Biochem. 2011, 112 (10): 2920-2930. 10.1002/jcb.23208.
Article
CAS
PubMed
PubMed Central
Google Scholar
D’Andrea P, Calabrese A, Capozzi I, Grandolfo M, Tonon R, Vittur F: Intercellular Ca2+ waves in mechanically stimulated articular chondrocytes. Biorheology. 2000, 37 (1–2): 75-83.
PubMed
Google Scholar
Grandolfo M, Calabrese A, D’Andrea P: Mechanism of mechanically induced intercellular calcium waves in rabbit articular chondrocytes and in HIG-82 synovial cells. J Bone Miner Res. 1998, 13 (3): 443-453. 10.1359/jbmr.1998.13.3.443.
Article
CAS
PubMed
Google Scholar
Roman-Blas JA, Jimenez SA: NF-kappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage. 2006, 14 (9): 839-848. 10.1016/j.joca.2006.04.008.
Article
CAS
PubMed
Google Scholar
Marcu KB, Otero M, Olivotto E, Borzi RM, Goldring MB: NF-kappaB signaling: multiple angles to target OA. Curr Drug Targets. 2010, 11 (5): 599-613. 10.2174/138945010791011938.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kameritsch P, Pogoda K, Pohl U: Channel-independent influence of connexin 43 on cell migration. Biochim Biophys Acta. 2012, 1818 (8): 1993-2001. 10.1016/j.bbamem.2011.11.016.
Article
CAS
PubMed
Google Scholar
Vinken M, Decrock E, Leybaert L, Bultynck G, Himpens B, Vanhaecke T, Rogiers V: Non-channel functions of connexins in cell growth and cell death. Biochim Biophys Acta. 2012, 1818 (8): 2002-2008. 10.1016/j.bbamem.2011.06.011.
Article
CAS
PubMed
Google Scholar
Herve JC, Derangeon M, Sarrouilhe D, Giepmans BN, Bourmeyster N: Gap junctional channels are parts of multiprotein complexes. Biochim Biophys Acta. 2012, 1818 (8): 1844-1865. 10.1016/j.bbamem.2011.12.009.
Article
CAS
PubMed
Google Scholar
Lima F, Niger C, Hebert C, Stains JP: Connexin43 potentiates osteoblast responsiveness to fibroblast growth factor 2 via a protein kinase C-delta/Runx2-dependent mechanism. Mol Biol Cell. 2009, 20 (11): 2697-2708. 10.1091/mbc.E08-10-1079.
Article
CAS
PubMed
PubMed Central
Google Scholar
Im HJ, Muddasani P, Natarajan V, Schmid TM, Block JA, Davis F, van Wijnen AJ, Loeser RF: Basic fibroblast growth factor stimulates matrix metalloproteinase-13 via the molecular cross-talk between the mitogen-activated protein kinases and protein kinase Cdelta pathways in human adult articular chondrocytes. J Biol Chem. 2007, 282 (15): 11110-11121. 10.1074/jbc.M609040200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Manner PA, Horner A, Shum L, Tuan RS, Nuckolls GH: Regulation of MMP-13 expression by RUNX2 and FGF2 in osteoarthritic cartilage. Osteoarthritis Cartilage. 2004, 12 (12): 963-973. 10.1016/j.joca.2004.08.008.
Article
PubMed
Google Scholar
Garcia M, Knight MM: Cyclic loading opens hemichannels to release ATP as part of a chondrocyte mechanotransduction pathway. J Orthop Res. 2010, 28 (4): 510-515.
CAS
PubMed
Google Scholar
Zhang J, Zhang H, Zhang M, Qiu Z, Wu Y, Callaway DA, Jiang JX, Lu L, Jing L, Yang T, Wang MQ: Connexin43 hemichannels mediate small molecule exchange between chondrocytes and matrix in biomechanically-stimulated temporomandibular joint cartilage. Osteoarthritis Cartilage. 2014, 22 (6): 822-830. 10.1016/j.joca.2014.03.017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Plotkin LI: Connexin 43 hemichannels and intracellular signaling in bone cells. Front Physiol. 2014, 5: 131-
Article
PubMed
PubMed Central
Google Scholar
Siller-Jackson AJ, Burra S, Gu S, Xia X, Bonewald LF, Sprague E, Jiang JX: Adaptation of connexin 43-hemichannel prostaglandin release to mechanical loading. J Biol Chem. 2008, 283 (39): 26374-26382. 10.1074/jbc.M803136200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cherian PP, Siller-Jackson AJ, Gu S, Wang X, Bonewald LF, Sprague E, Jiang JX: Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell. 2005, 16 (7): 3100-3106. 10.1091/mbc.E04-10-0912.
Article
CAS
PubMed
PubMed Central
Google Scholar