Cho K-J, Kim Y-T, Shin S-h, Suk S-I. Surgical treatment of adult degenerative scoliosis. Asian Spine J. 2014;8(3):371–81.
Article
Google Scholar
Isaacs RE, Hyde J, Goodrich JA, Rodgers WB, Phillips FM. A prospective, nonrandomized, multicenter evaluation of extreme lateral interbody fusion for the treatment of adult degenerative scoliosis: perioperative outcomes and complications. Spine (Phila Pa 1976). 2010;35(26S):S322–30.
Article
Google Scholar
Fu K-MG, Bess S, Shaffrey CI, Smith JS, Lafage V, Schwab F, et al. Patients with adult spinal deformity treated operatively report greater baseline pain and disability than patients treated nonoperatively; however, deformities differ between age groups. Spine (Phila Pa 1976). 2014;39(17):1401–7.
Article
Google Scholar
Paulus MC, Kalantar SB, Radcliff K. Cost and value of spinal deformity surgery. Spine (Phila Pa 1976). 2014;39(5):388–93.
Article
Google Scholar
Mobbs RJ, Phan K, Malham G, Seex K, Rao PJ. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg. 2015;1(1):2.
Google Scholar
Härtl R, Joeris A, McGuire RA. Comparison of the safety outcomes between two surgical approaches for anterior lumbar fusion surgery: anterior lumbar interbody fusion (ALIF) and extreme lateralinterbody fusion (ELIF). Eur Spine J. 2016;25(5):1484–521.
Article
Google Scholar
Rao PJ, Loganathan A, Yeung V, Mobbs RJ. Outcomes of anterior lumbar interbody fusion surgery based on indication: a prospective study. Neurosurgery. 2015;76(1):7–23 discussion 23-4.
Article
Google Scholar
Dahdaleh NS, Smith ZA, Snyder LA, Graham RB, Fessler RG, Koski TR. Lateral transpsoas lumbar interbody fusion: outcomes and deformity correction. Neurosurg Clin N Am. 2014;25(2):353–60.
Article
Google Scholar
Phillips FM, Isaacs RE, Rodgers WB, Khajavi K, Tohmeh AG, Deviren V, et al. Adult degenerative scoliosis treated with XLIF: clinical and radiographical results of a prospective multicenter study with 24-month follow-up. Spine (Phila Pa 1976). 2013;38(21):1853–61.
Article
Google Scholar
Lykissas MG, Aichmair A, Hughes AP, Sama AA, Lebl DR, Taher F, et al. Nerve injury after lateral lumbar interbody fusion: a review of 919 treated levels with identification of risk factors. Spine J. 2014;14(5):749–58.
Article
Google Scholar
Silvestre C, Mac-Thiong JM, Hilmi R, Roussouly P. Complications and morbidities of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lumbar interbody fusion in 179 patients. Asian Spine J. 2012;6(2):89–97.
Article
Google Scholar
Beng TB, Kotani Y, Sia U, Gonchar I. Effect of indirect neural decompression with oblique lateral Interbody fusion was influenced by preoperative lumbar Lordosis in adult spinal deformity surgery. Asian Spine J. 2019,3;13(5):809–14.
He W, He D, Sun YQ, Xing YG, Liu MM, Wen JK, et al. Quantitative analysis of paraspinal muscle atrophy after oblique lateral interbody fusion alone vs. combined with percutaneous pedicle screw fixation in patients with spondylolisthesis. BMC Musculoskelet Disord. 2020;21(1):1–9.
Google Scholar
Agarwal N, Faramand A, Alan N, Tempel ZJ, Hamilton DK, Okonkwo DO, et al. Lateral lumbar interbody fusion in the elderly: a 10-year experience: presented at the 2018 AANS/CNS joint section on disorders of the spine and peripheral nerves. J Neurosurg Spine. 2018;29(5):525–9.
Article
Google Scholar
Malham GM, Ellis NJ, Parker RM, Blecher CM, White R, Goss B, et al. Maintenance of segmental Lordosis and disk height in stand-alone and instrumented extreme lateral Interbody fusion (XLIF). Clin Spine Surg. 2017;30(2):E90–8.
Article
Google Scholar
Silva FE, Lenke LG. Adult degenerative scoliosis: evaluation and management. Neurosurg Focus. 2010, Mar;28(3):E1.
Article
Google Scholar
Marchi L, Abdala N, Oliveira L, Amaral R, Coutinho E, Pimenta L. Radiographic and clinical evaluation of cage subsidence after;stand-alone lateral interbody fusion clinical article. J Neurosurg Spine. 2013;19(1):110–8.
Article
Google Scholar
Aulisa AG, Giordano M, Guzzanti V, et al. Effectiveness of school scoliosis screening and the importance of this method in measures to reduce morbidity in an Italian territory. J Pediatric Orthop B. 2019;28(3):271–7.
Article
Google Scholar
Maria FD, Vescio A, Caldaci A. Immediate effects of Sforzesco bracing on respiratory function in adolescents with idiopathic scoliosis. Healthcare (Basel). 2021;9(10):1372.
Article
Google Scholar
Attenello J, Chang C, Lee YP, Zlomislic V, Garfin SR, Allen RT. Comparison of lateral lumbar interbody fusion (LLIF) with open versus percutaneous screw fixation for adult degenerative scoliosis. J Orthop. 2018;15(2):486–9.
Article
Google Scholar
Blake RW, Gerber EJ, Patterson J. Intraoperative and Early Postoperative Complications in Extreme Lateral Interbody Fusion : An Analysis of 600 Cases. Spine (Phila Pa 1976). 2011;36(1):26.
Article
Google Scholar
Liu L, Liang Y, Zhang H, Wang H, Guo C, Pu X, et al. Imaging anatomical research on the operative windows of oblique lumbar Interbody fusion. PLoS One. 2016;11(9):e0163452.
Article
Google Scholar
Palmisani M, Dema E, Cervellati S. Surgical treatment of adult degenerative scoliosis. Eur Spine J. 2013;22(6):829–33.
Article
Google Scholar
Paterakis KN, Brotis AG, Paschalis A, Tzannis A, Fountas KN. Extreme lateral lumbar interbody fusion (XLIF) in the management of degenerative scoliosis: a retrospective case series. J Spine Surg. 2018;4(3):610.
Article
Google Scholar
Jin C, Jaiswal MS, Jeun SS, Ryu KS, Hur JW, Kim JS. Outcomes of oblique lateral interbody fusion for degenerative lumbar disease in patients under or over 65 years of age. J Orthop Surg Res. 2018;13(1):38.
Article
Google Scholar
Hresko MT, Labelle H, Roussouly P, Berthonnaud E. Classification of high-grade spondylolistheses based on pelvic version and spinebalance: possible rationale for reduction. Spine (Phila Pa 1976). 2007;32(20):2208–13.
Article
Google Scholar
Champagne PO, Walsh C, Diabira J, Plante MÉ, Wang Z, Boubez G, et al. Sagittal balance correction following lumbar Interbody fusion: a comparison of the three approaches. Asian Spine J. 2019;13(3):450–8.
Article
Google Scholar
Ohtori S, Orita S, Yamauchi K, Eguchi Y, Ochiai N, Kishida S, et al. Mini-open anterior retroperitoneal lumbar interbody fusion: oblique lateral interbody fusion for lumbar spinal degeneration disease. Yonsei Med J. 2015;56(4):1051–9.
Article
Google Scholar
Steffen T, Tsantrizos A, Fruth I, Aebi M. Cages: designs and concepts. Eur Spine J. 2000;9(1):S089–94.
Google Scholar
Rao PJ, Ghent F, Phan K, Lee SLK, Reddy R, Mobbs RJ. Stand-alone anterior lumbar interbody fusion for treatment of degenerative spondylolisthesis. J Clin Neurosci. 2015;22(10):1619–24.
Article
Google Scholar
Ahmadian A, Bach K, Bolinger B, Malham GM, Okonkwo DO, Kanter AS, et al. Stand-alone minimally invasive lateral lumbar interbody fusion: multicenter clinical outcomes. J Clin Neurosci. 2015;22(4):740–6.
Article
Google Scholar
Zhang JD, Poffyn B, Sys G, Uyttendaele D. (2012) are stand-alone cages sufficient for anterior lumbar interbody fusion? Orthop Surg. 2012;4(1):11–4.
Article
Google Scholar
Zhang C, Wang K, Jian F, Wu H. Efficacy of oblique lateral Interbody fusion in treatment of degenerative lumbar disease. World Neurosurg. 2018;124:e17–24.
Article
Google Scholar
Tempel ZJ, Gandhoke GS, Okonkwo DO, Kanter AS. Impaired bone mineral density as a predictor of graft subsidence following minimally invasive transpsoas lateral lumbar interbody fusion. Eur Spine J. 2015;24(S3):414–9.
Article
Google Scholar