Kehlet H. Multimodal approach to control postoperative pathophysiology and rehabilitation. Br J Anaesth. 1997;78(5):606–17.
Article
CAS
PubMed
Google Scholar
Ljungqvist O, Scott M, Fearon KC. Enhanced Recovery After Surgery: A Review. JAMA Surg. 2017;152(3):292–8.
Article
PubMed
Google Scholar
Carli F. Physiologic considerations of Enhanced Recovery After Surgery (ERAS) programs: implications of the stress response. Can J Anaesth. 2015;62(2):110–9.
Article
PubMed
Google Scholar
Auyong DB, Allen CJ, Pahang JA, Clabeaux JJ, MacDonald KM, Hanson NA. Reduced Length of Hospitalization in Primary Total Knee Arthroplasty Patients Using an Updated Enhanced Recovery After Orthopedic Surgery (ERAS) Pathway. J Arthroplasty. 2015;30(10):1705–9.
Article
PubMed
Google Scholar
Liu VX, Rosas E, Hwang J, et al. Enhanced Recovery After Surgery Program Implementation in 2 Surgical Populations in an Integrated Health Care Delivery System. JAMA surgery. 2017;152(7):e171032.
Article
PubMed
PubMed Central
Google Scholar
Wainwright TW, Immins T, Middleton RG. Enhanced recovery after surgery (ERAS) and its applicability for major spine surgery. Best Pract Res Clin Anaesthesiol. 2016;30(1):91–102.
Article
PubMed
Google Scholar
Chakravarthy V, Yokoi H, Manlapaz MR, Krishnaney AA. Enhanced Recovery in Spine Surgery and Perioperative Pain Management. Neurosurg Clin N Am. 2020;31(1):81–91.
Article
PubMed
Google Scholar
Lamperti M, Tufegdzic B, Avitsian R. Management of complex spine surgery. Curr Opin Anaesthesiol. 2017;30(5):551–6.
Article
PubMed
Google Scholar
Dietz N, Sharma M, Adams S, et al. Enhanced Recovery After Surgery (ERAS) for Spine Surgery: A Systematic Review. World Neurosurg. 2019;130:415–26.
Article
PubMed
Google Scholar
Elsarrag M, Soldozy S, Patel P, et al. Enhanced recovery after spine surgery: a systematic review. Neurosurg Focus. 2019;46(4):E3.
Article
PubMed
Google Scholar
Kerolus MG, Yerneni K, Witiw CD, et al. Enhanced Recovery After Surgery Pathway for Single-Level Minimally Invasive Transforaminal Lumbar Interbody Fusion Decreases Length of Stay and Opioid Consumption. Neurosurgery. 2021;88(3):648–57.
Article
PubMed
Google Scholar
Brusko GD, Kolcun JPG, Heger JA, et al. Reductions in length of stay, narcotics use, and pain following implementation of an enhanced recovery after surgery program for 1- to 3-level lumbar fusion surgery. Neurosurg Focus. 2019;46(4):E4.
Article
PubMed
Google Scholar
Feng C, Zhang Y, Chong F, et al. Establishment and Implementation of an Enhanced Recovery After Surgery (ERAS) Pathway Tailored for Minimally Invasive Transforaminal Lumbar Interbody Fusion Surgery. World Neurosurg. 2019;129:e317–23.
Article
PubMed
Google Scholar
Smith J, Probst S, Calandra C, et al. Enhanced recovery after surgery (ERAS) program for lumbar spine fusion. Perioper Med (Lond). 2019;8:4.
Article
Google Scholar
Soffin EM, Vaishnav AS, Wetmore DS, et al. Design and Implementation of an Enhanced Recovery After Surgery (ERAS) Program for Minimally Invasive Lumbar Decompression Spine Surgery: Initial Experience. Spine (Phila Pa 1976). 2019;44(9):E561–70.
Article
Google Scholar
Grasu RM, Cata JP, Dang AQ, et al. Implementation of an Enhanced Recovery After Spine Surgery program at a large cancer center: a preliminary analysis. J Neurosurg Spine. 2018;29:1–11.
Article
Google Scholar
Chan CYW, Loo SF, Ong JY, et al. Feasibility and Outcome of an Accelerated Recovery Protocol in Asian Adolescent Idiopathic Scoliosis Patients. Spine. 2017;42(24):E1415–22.
Article
PubMed
Google Scholar
Oglesby M, Fineberg SJ, Patel AA, Pelton MA, Singh K. Epidemiological trends in cervical spine surgery for degenerative diseases between 2002 and 2009. Spine. 2013;38(14):1226–32.
Article
PubMed
Google Scholar
Marquez-Lara A, Nandyala SV, Fineberg SJ, Singh K. Current trends in demographics, practice, and in-hospital outcomes in cervical spine surgery: a national database analysis between 2002 and 2011. Spine. 2014;39(6):476–81.
Article
PubMed
Google Scholar
Weiss HK, Yamaguchi JT, Garcia RM, Hsu WK, Smith ZA, Dahdaleh NS. Trends in National Use of Anterior Cervical Discectomy and Fusion from 2006 to 2016. World neurosurgery. 2020;138:e42–51.
Article
PubMed
PubMed Central
Google Scholar
Mella P, Suk KS, Kim HS, et al. ACDF With Total En Bloc Resection of Uncinate in Foraminal Stenosis of the Cervical Spine: Comparison With Conventional ACDF. Clin Spine Surg. 2020.
Epstein NE. A Review of Complication Rates for Anterior Cervical Diskectomy and Fusion (ACDF). Surg Neurol Int. 2019;10:100.
Article
PubMed
PubMed Central
Google Scholar
Zou S, Gao J, Xu B, Lu X, Han Y, Meng H. Anterior cervical discectomy and fusion (ACDF) versus cervical disc arthroplasty (CDA) for two contiguous levels cervical disc degenerative disease: a meta-analysis of randomized controlled trials. Eur Spine J. 2017;26(4):985–97.
Article
PubMed
Google Scholar
Fountas KN KE, Nikolakakos LG, Smisson HF, Johnston KW, Grigorian AA, Lee GP, Jr Robinson JS. Anterior cervical discectomy and fusion associated complications. Spine (Phila Pa 1976). 2007;32(21):2310–7.
Article
Google Scholar
Tasiou A, Giannis T, Brotis AG, et al. Anterior cervical spine surgery-associated complications in a retrospective case-control study. J Spine Surg. 2017;3(3):444–59.
Article
PubMed
PubMed Central
Google Scholar
Debono B, Sabatier P, Boniface G, et al. Implementation of enhanced recovery after surgery (ERAS) protocol for anterior cervical discectomy and fusion: a propensity score-matched analysis. Eur Spine J. 2021;30(2):560–7.
Article
PubMed
Google Scholar
Mesfin FB, Hoang S, Ortiz Torres M, NgniteweMassa’a R, Castillo R. Retrospective Data Analysis and Literature Review for a Development of Enhanced Recovery after Surgery Pathway for Anterior Cervical Discectomy and Fusion. Cureus. 2020;12(2):e6930.
PubMed
PubMed Central
Google Scholar
Debono B, Wainwright TW, Wang MY, et al. Consensus statement for perioperative care in lumbar spinal fusion: Enhanced Recovery After Surgery (ERAS®) Society recommendations. Spine J. 2021;S1529–9430(21):00002–4.
Google Scholar
Stuart PC. The evidence base behind modern fasting guidelines. Best Pract Res Clin Anaesthesiol. 2006;20(3):457–69.
Article
PubMed
Google Scholar
Wang MY, Chang P-Y, Grossman J. Development of an Enhanced Recovery After Surgery (ERAS) approach for lumbar spinal fusion. J Neurosurg Spine. 2017;26(4):411–8.
Article
Google Scholar
Kim JC, Choi YS, Kim KN, Shim JK, Lee JY, Kwak YL. Effective dose of peri-operative oral pregabalin as an adjunct to multimodal analgesic regimen in lumbar spinal fusion surgery. Spine (Phila Pa 1976). 2011;36(6):428–33.
Article
Google Scholar
Al-Sukhun J, Al-Sukhun S, Penttilä H, Ashammakhi N, Al-Sukhun R. Preemptive analgesic effect of low doses of celecoxib is superior to low doses of traditional nonsteroidal anti-inflammatory drugs. J Craniofac Surg. 2012;23(2):526–9.
Article
PubMed
Google Scholar
Kashefi P, Honarmand A, Safavi M. Effects of preemptive analgesia with celecoxib or acetaminophen on postoperative pain relief following lower extremity orthopedic surgery. Adv Biomed Res. 2012;1:66.
Article
PubMed
PubMed Central
Google Scholar
Savitz MH, Malis LI, Savitz SI. Efficacy of prophylactic antibiotic therapy in spinal surgery: a meta-analysis. Neurosurgery. 2003;53(1):243–5.
Article
PubMed
Google Scholar
Zhang F, Wang K, Li FN, et al. Effectiveness of tranexamic acid in reducing blood loss in spinal surgery: a meta-analysis. BMC Musculoskelet Disord. 2014;15:448.
Article
PubMed
PubMed Central
Google Scholar
Guest JD, Vanni S, Silbert L. Mild hypothermia, blood loss and complications in elective spinal surgery. Spine J. 2004;4(2):130–7.
Article
PubMed
Google Scholar
Bacchin MR, Ceria CM, Giannone S, et al. Goal-Directed Fluid Therapy Based on Stroke Volume Variation in Patients Undergoing Major Spine Surgery in the Prone Position: A Cohort Study. Spine (Phila Pa 1976). 2016;41(18):E1131–7.
Article
Google Scholar
Li J, Li H, Xv ZK, et al. Enhanced recovery care versus traditional care following laminoplasty: A retrospective case-cohort study. Medicine (Baltimore). 2018;97(48):e13195.
Article
Google Scholar
Debono B, Corniola MV, Pietton R, Sabatier P, Hamel O, Tessitore E. Benefits of Enhanced Recovery After Surgery for fusion in degenerative spine surgery: impact on outcome, length of stay, and patient satisfaction. Neurosurg Focus. 2019;46(4):E6.
Article
PubMed
Google Scholar
Soffin EM, Wetmore DS, Barber LA, et al. An enhanced recovery after surgery pathway: association with rapid discharge and minimal complications after anterior cervical spine surgery. Neurosurg Focus. 2019;46(4):E9.
Article
PubMed
Google Scholar
Carr DA, Saigal R, Zhang F, Bransford RJ, Bellabarba C, Dagal A. Enhanced perioperative care and decreased cost and length of stay after elective major spinal surgery. Neurosurg Focus. 2019;46(4):E5.
Article
PubMed
Google Scholar
Siasios I, Fountas K, Dimopoulos V, Pollina J. The role of steroid administration in the management of dysphagia in anterior cervical procedures. Neurosurg Rev. 2018;41(1):47–53.
Article
PubMed
Google Scholar
Sun M, Kong L, Jiang Z, Li L, Lu B. Microscope Enhanced the Efficacy and Safety of Anterior Cervical Surgery for Managing Cervical Ossification of the Posterior Longitudinal Ligament. Med Sci Monit. 2017;23:3088–94.
Article
PubMed
PubMed Central
Google Scholar
Barbagallo GMV, Certo F. Three-Dimensional, High-Definition Exoscopic Anterior Cervical Discectomy and Fusion: A Valid Alternative to Microscope-Assisted Surgery. World Neurosurgery. 2019;130:e244–50.
Article
PubMed
Google Scholar
Devin CJ, McGirt MJ. Best evidence in multimodal pain management in spine surgery and means of assessing postoperative pain and functional outcomes. J Clin Neurosci. 2015;22(6):930–8.
Article
PubMed
Google Scholar