Ozgur BM, Aryan HE, Pimenta L, et al. Extreme Lateral Interbody Fusion ( XLIF) :A novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006;6(4):435–43.
Article
PubMed
Google Scholar
Dakwar E, Cardona RF, Smith DA, et al. Early outcomes and safety of the minimally invasive, lateral retroperitoneal transpsoas approach for adult degenerative scoliosis. Neurosurgical Focus. 2010;28(3):E8.
Article
PubMed
Google Scholar
Oliveira L, Marchi L, Coutinho E, et al. A radiographic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine (Phila Pa 1976). 2010;35(26 Suppl):S331–7.
Article
Google Scholar
Elowitz EH, Yanni DS, Chwajol M, et al. Evaluation of indirect decompression of the lumbar spinal canal following minimally invasive lateral transpsoas interbody fusion: radiographic and outcome analysis. Minim Invasive Neurosurg. 2011;54(5/6):201–6.
CAS
PubMed
Google Scholar
Meredith DS, Kepler CK, Huang RC, et al. Extreme lateral interbody fusion (XLIF) in the thoracic and thoracolumbar spine: technical report and early outcomes. HSS J. 2013;9(1):25–31.
Article
PubMed
PubMed Central
Google Scholar
Winder MJ, Gambhir S. Comparison of ALIF vs. XLIF for L4/5 interbody fusion: pros, cons, and literature review. J Spine Surg. 2016;2(1):2–8.
Article
PubMed
PubMed Central
Google Scholar
Paterakis KN, Brotis AG, Paschalis A, et al. Extreme lateral lumbar interbody fusion (XLIF) in the management of degenerative scoliosis: a retrospective case series. J Spine Surg. 2018;4(3):610–5.
Article
PubMed
PubMed Central
Google Scholar
Plaats AVD, Veldhuizen AG, Verkerke GJ. Numerical simulation of asymmetrically altered growth as initiation mechanism of scoliosis. Ann Biomed Eng. 2007;35(7):1206–15.
Article
PubMed
PubMed Central
Google Scholar
Goel VK, Monroe BT, Gilbertson LG, et al. Interlaminar shear stresses and laminae separation in a disc. Finite element analysis of the L3-L4 motion segment subjected to axial compressive loads. Spine (Phila Pa 1976). 1995;20(6):689–98.
Article
CAS
Google Scholar
Polikeit A, Ferguson SJ, Nolte LP, et al. Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J. 2003;12(4):413–20.
Article
PubMed
Google Scholar
Ding JY, Qian S, Wan L, et al. Design and finite-element evaluation ofa versatile assembled lumbar interbody fusion cage. Arch Orthop Trauma Surg. 2010;130(4):565–71.
Article
PubMed
Google Scholar
Song C, Li XF, Liu ZD, et al. Biomechanical assessment of a novel L4/5 level interspinous implant using three dimensional finite element analysis. Eur Rev Med Pharmacol Sci. 2014;18(1):86–94.
CAS
PubMed
Google Scholar
Ouyang P, Lu T, He X, et al. Biomechanical comparison of integrated fixation cage versus anterior cervical plate and cage in anterior cervical Corpectomy and fusion (ACCF): a finite element analysis. Med Sci Monit. 2019;25:1489–98.
Article
PubMed
PubMed Central
Google Scholar
Sin DA, Heo DH. Comparative finite element analysis of lumbar cortical screws and pedicle screws in Transforaminal and posterior lumbar interbody fusion. Neurospine. 2019;16(2):298–304.
Article
PubMed
PubMed Central
Google Scholar
Schmidt H, Heuer F, Claes L, et al. The relation between theinstantaneous center of rotation and facet joint forces-a finiteelement analysis. Clin Biomech (Bristol,Avon). 2008;23(3):270–8.
Article
Google Scholar
Niosi CA, Zhu QA, Wilson DC, et al. Biomechanical characterization of the three-dimensional kinematic behaviour of the Dynesys dynamic stabilization system: an in vitro study. Eur Spine J. 2006;15(6):913–22.
Article
PubMed
Google Scholar
Park SW, Lim TJ, Park J. A biomechanical study of the instrumented and adjacent lumbar levels after in-space interspinous spacer insertion. J Neurosurg Spine. 2010;12(5):560–9.
Article
PubMed
Google Scholar
Ambati DV, Wright EK Jr, Lehman RA Jr, et al. Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a finite element study. Spine J. 2015;15(8):1812–22.
Article
PubMed
Google Scholar
Srinivas GR, Deb A, Kumar MN. Long-term effects of segmental lumbar spinal fusion on adjacent healthy discs: a finite element study. Asian Spine J. 2016;10(2):205–14.
Article
PubMed
PubMed Central
Google Scholar
Srinivas GR, Kumar MN, Deb A. Adjacent disc stress following floating lumbar spine fusion: a finite element study. Asian Spine J. 2017;11(4):538–47.
Article
PubMed
PubMed Central
Google Scholar
Cho PG, Ji GY, Park SH, et al. Biomechanical analysis of biodegradable cervical plates developed for anterior cervical discectomy and fusion. Asian Spine J. 2018;12(6):1092–9.
Article
PubMed
PubMed Central
Google Scholar
Wang BJ, Hua WB, Ke WC, et al. Biomechanical evaluation of Transforaminal lumbar interbody fusion and oblique lumbar interbody fusion on the adjacent segment: a finite element analysis. World Neurosurg. 2019;126:e819–24.
Article
PubMed
Google Scholar
Shasti M, Koenig SJ, Nash AB, et al. Biomechanical evaluation of lumbar lateral interbody fusion for the treatment of adjacent segment disease. Spine J. 2019;19(3):545–51.
Article
PubMed
Google Scholar
Marchi L, Abdala N, Oliveira L, et al. Radiographic and clinical evaluation of cage subsidence after stand-alone lateral interbody fusion. J Neurosurg Spine. 2013;19(1):110–8.
Article
PubMed
Google Scholar
Haddas R, Xu M, Lieberman I, et al. Finite element based-analysis for pre and post lumbar fusion of adult degenerative scoliosis patients. Spine Deform. 2019;7(4):543–52.
Article
PubMed
Google Scholar
Phan K, Leung V, Scherman DB, et al. Bilateral versus unilateral instrumentation in spinal surgery: systematic review and trial sequential analysis of prospective studies. J Clin Neurosci. 2016;30:15–23.
Article
PubMed
Google Scholar
Chen DJ, Yao C, Song QW, et al. Unilateral versus bilateral pedicle screw fixation combined with Transforaminal lumbar interbody fusion for the treatment of low lumbar degenerative disc diseases: analysis of clinical and radiographic results. World Neurosurg. 2018;115:e516–22.
Article
PubMed
Google Scholar
Duncan JW, Bailey. An analysis of fusion cage migration in unilateral and bilateral fixation with transforaminal lumbar interbody fusion. Eur Spine J. 2013;22(2):439–45.
Article
PubMed
Google Scholar
Pan FM, Wang SJ, Yong ZY, et al. Risk factors for cage retropulsion after lumbar interbody fusion surgery: series of cases and literature review. Int J Surg. 2016;30:56–62.
Article
PubMed
Google Scholar
Macki M, Anand SK, Surapaneni A, et al. Subsidence rates after lateral lumbar interbody fusion: a systematic review. World Neurosurg. 2019;122:599–606.
Article
PubMed
Google Scholar
Tsuang YH, Chiang YF, Hung CY, et al. Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation--a finite element study. Med Eng Phys. 2009;31(5):565–70.
Article
PubMed
Google Scholar
Le TV, Baaj AA, Dakwar E, et al. Subsidence of polyetheretherketone intervertebral cages in minimally invasive lateral retroperitoneal transpsoas lumbar interbody fusion. Spine (Phila Pa1976). 2012;37(14):1268–73.
Article
Google Scholar
Cheng FU, Wang YZ, Jiang YG, et al. Three-dimensional finite element analysis of Trasforaminal lumbar interbody fusion. J Shanghai Jiao Tong Univ. 2015;49(12):1876–81.
Google Scholar
Li J, Wang HG, Shang J, et al. Finite element analysis of stress distribution before and after segment fusion in transforaminal lumbar interbody fusion model. J Third Mil Med Univ. 2015;37(14):1449–54.
Google Scholar
Pearcy M, Burrough S. Assessment of bony union after interbody fusion of the lumbar spine using a biplanar radiographic technique. J Bone Joint Surg Br. 1982;64(2):228–32.
Article
CAS
PubMed
Google Scholar
Shono Y, Kaneda K, Abumi K, et al. Stability of posterior spinal instrumentation and its effects on adjacent motion segments in the lumbosacral spine. Spine (Phila Pa 1976). 1998;23(14):1550–8.
Article
CAS
Google Scholar
Ha KY, Schendel MJ, Lewis JL, et al. Effect of immobilization and configuration on lumbar adjacent-segment biomechanics. J Spinal Disord. 1993;6:99–105.
Article
CAS
PubMed
Google Scholar
Bastian L, Lange U, Knop C, et al. Evaluation of the mobility of adjacent segments after posterior thoracolumbar fixation: a biomechanical study. Eur Spine J. 2001;10:295–300.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chow DH, Luk KD, Evans JH, et al. Effects of short anterior lumbar interbody fusion on biomechanics of neighboring unfused segments. Spine. 1996;21:549–55.
Article
CAS
PubMed
Google Scholar
Esses SI, Doherty BJ, Crawford MJ, et al. Kinematic evaluation of lumbar fusion techniques. Spine. 1996;21:676–84.
Article
CAS
PubMed
Google Scholar
Nagata H, Schendel MJ, Transfeldt EE, et al. The effects of immobilization of long segments of the spine on the adjacent and distal facet force and lumbosacral motion. Spine. 1993;18:2471–9.
Article
CAS
PubMed
Google Scholar
Quinnell RC, Stockdale HR. Some experimental observations of the influence of a single lumbar floating fusion on the remaining lumbar spine. Spine. 1981;6:263–7.
Article
CAS
PubMed
Google Scholar
Lee CK, Langrana NA. Lumbosacral spinal fusion: a biomechanical study. Spine. 1984;9:574–81.
Article
CAS
PubMed
Google Scholar
Chen CS, Cheng CK, Liu CL, et al. Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Med Eng Phys. 2001;23:483–91.
Article
CAS
PubMed
Google Scholar
Weinhoffer SL, Guyer RD, Herbert M, et al. Intradiscal pressure measurements above an instrumented fusion. A cadaveric study. Spine. 1995;20:526–31.
Article
CAS
PubMed
Google Scholar
Cunningham BW, Kotani Y, McNulty PS, et al. The effect of spinal destabilization and instrumentation on lumbar intradiscal pressure: an in vitro biomechanical analysis. Spine (Phila Pa 1976). 1997;22(22):2655–63.
Article
CAS
Google Scholar
Xia XP, Chen HL, Cheng HB. Prevalence of adjacent segment degeneration after spine surgery: a systematic review and meta-analysis [J]. Spine. 2013;38(7):597–608.
Article
PubMed
Google Scholar
Hashimoto K, Aizawa T, Kanno H, et al. Adjacent segment degeneration after fusion spinal surgery-a systematic review [J]. Int Orthop. 2019;43(4):987–93.
Article
PubMed
Google Scholar
Alentado VJ, Lubelski D, Healy AT, et al. Predisposing characteristics of adjacent segment disease after lumbar fusion. Spine. 2016;41(14):1167–72.
Article
PubMed
Google Scholar
Kim H, Kang K, Moon S, et al. The quantitative assessment of risk factors to overstress at adjacent segments after lumbar fusion: removal of posterior ligaments and pedicle screws. Spine (Phila Pa 1976). 2011;36(17):1367–73.
Article
Google Scholar
Liu HC, Wu WL, Li Y, et al. Protective effects of preserving the posterior complex on the development of adjacent-segment degeneration after lumbar fusion: clinical article. Spine. 2013;19(2):201–6.
PubMed
Google Scholar
Huang YP, Du CF, Cheng CK, et al. Preserving posterior complex can prevent adjacent segment disease following posterior lumbar interbody fusion surgeries: a fifinite element analysis. PLoS One. 2016;11(11):e0166452.
Article
PubMed
PubMed Central
Google Scholar