Longstaff LM, Sloan K, Stamp N, Scaddan M, Beaver R. Good alignment after total knee arthroplasty leads to faster rehabilitation and better function. J Arthroplast. 2009;24(4):570–8. https://doi.org/10.1016/j.arth.2008.03.002.
Article
Google Scholar
Moreland JR. Mechanisms of failure in total knee arthroplasty. Clin Orthop Relat Res. 1988;226:49–64.
Google Scholar
Huang EH, Copp SN, Bugbee WD. Accuracy of a handheld accelerometer-based navigation system for femoral and Tibial resection in Total knee arthroplasty. J Arthroplast. 2015;30(11):1906–10. https://doi.org/10.1016/j.arth.2015.05.055.
Article
Google Scholar
Anderson KC, Buehler KC, Markel DC. Computer assisted navigation in total knee arthroplasty: comparison with conventional methods. J Arthroplast. 2005;20(7 Suppl 3):132–8. https://doi.org/10.1016/j.arth.2005.05.009.
Article
Google Scholar
Blakeney WG, Khan RJ, Wall SJ. Computer-assisted techniques versus conventional guides for component alignment in total knee arthroplasty: a randomized controlled trial. J Bone Joint Surg Am. 2011;93(15):1377–84. https://doi.org/10.2106/jbjs.I.01321.
Article
PubMed
Google Scholar
National Joint Replacement Registry AOA Hip, Knee & Shoulder Arthroplasty 2017 Annu Rep 2017.
de Steiger RN, Liu YL, Graves SE. Computer navigation for total knee arthroplasty reduces revision rate for patients less than sixty-five years of age. J Bone Joint Surg Am. 2015;97(8):635–42. https://doi.org/10.2106/jbjs.M.01496.
Article
PubMed
Google Scholar
Jones CW, Jerabek SA. Current role of computer navigation in Total knee arthroplasty. J Arthroplast. 2018;33(7):1989–93. https://doi.org/10.1016/j.arth.2018.01.027.
Article
Google Scholar
Laskin RS, Beksaç B. Computer-assisted navigation in TKA: where we are and where we are going. Clin Orthop Relat Res. 2006;1:452127–31. https://doi.org/10.1097/01.blo.0000238823.78895.dc.
Article
Google Scholar
Goh GS, Liow MH, Lim WS, Tay DK, Yeo SJ, Tan MH. Accelerometer-based navigation is as accurate as optical computer navigation in restoring the joint line and mechanical Axis after Total knee arthroplasty: a prospective matched study. J Arthroplast. 2016;31(1):92–7. https://doi.org/10.1016/j.arth.2015.06.048.
Article
Google Scholar
Gao X, Sun Y, Chen ZH, Dou TX, Liang QW, Li X. Comparison of the accelerometer-based navigation system with conventional instruments for total knee arthroplasty: a propensity score-matched analysis. J Orthop Surg Res. 2019;14(1):223. https://doi.org/10.1186/s13018-019-1258-y.
Article
PubMed
PubMed Central
Google Scholar
Kinney MC, Cidambi KR, Severns DL, Gonzales FB. Comparison of the iAssist handheld guidance system to conventional instruments for mechanical Axis restoration in Total knee arthroplasty. J Arthroplast. 2018;33(1):61–6. https://doi.org/10.1016/j.arth.2017.06.004.
Article
Google Scholar
Liow MH, Goh GS, Pang HN, Tay DK, Lo NN, Yeo SJ. Computer-assisted stereotaxic navigation improves the accuracy of mechanical alignment and component positioning in total knee arthroplasty. Arch Orthop Trauma Surg. 2016;136(8):1173–80. https://doi.org/10.1007/s00402-016-2483-z.
Article
PubMed
Google Scholar
Moo IH, Chen JYQ, Chau DHH, Tan SW, Lau ACK, Teo YS. Similar radiological results with accelerometer-based navigation versus conventional technique in total knee arthroplasty. J Orthop Surg (Hong Kong). 2018;26(2):2309499018772374. https://doi.org/10.1177/2309499018772374.
Article
Google Scholar
Nam D, Cody EA, Nguyen JT, Figgie MP, Mayman DJ. Extramedullary guides versus portable, accelerometer-based navigation for tibial alignment in total knee arthroplasty: a randomized, controlled trial: winner of the 2013 HAP PAUL award. J Arthroplast. 2014;29(2):288–94. https://doi.org/10.1016/j.arth.2013.06.006.
Article
Google Scholar
Meneghini RM, Mont MA, Backstein DB, Bourne RB, Dennis DA, Scuderi GR. Development of a modern knee society radiographic evaluation system and methodology for Total knee arthroplasty. J Arthroplast. 2015;30(12):2311–4. https://doi.org/10.1016/j.arth.2015.05.049.
Article
Google Scholar
Konigsberg B, Hess R, Hartman C, Smith L, Garvin KL. Inter- and intraobserver reliability of two-dimensional CT scan for total knee arthroplasty component malrotation. Clin Orthop Relat Res. 2014;472(1):212–7. https://doi.org/10.1007/s11999-013-3111-7.
Article
PubMed
Google Scholar
Jenny JY, Barbe B. Small differences between anatomical and mechanical sagittal femur axes: a radiological and navigated study of 50 patients. Arch Orthop Trauma Surg. 2012;132(7):1053–7. https://doi.org/10.1007/s00402-012-1500-0.
Article
PubMed
Google Scholar
Yoo JH, Chang CB, Shin KS, Seong SC, Kim TK. Anatomical references to assess the posterior tibial slope in total knee arthroplasty: a comparison of 5 anatomical axes. J Arthroplast. 2008;23(4):586–92. https://doi.org/10.1016/j.arth.2007.05.006.
Article
Google Scholar
Sarmah SS, Patel S, Hossain FS, Haddad FS. The radiological assessment of total and unicompartmental knee replacements. J Bone Joint Surg (Br). 2012;94(10):1321–9. https://doi.org/10.1302/0301-620x.94b10.29411.
Article
CAS
Google Scholar
Parratte S, Pagnano MW, Trousdale RT, Berry DJ. Effect of postoperative mechanical axis alignment on the fifteen-year survival of modern, cemented total knee replacements. J Bone Joint Surg Am. 2010;92(12):2143–9. https://doi.org/10.2106/jbjs.I.01398.
Article
PubMed
Google Scholar
Jeffery RS, Morris RW, Denham RA. Coronal alignment after total knee replacement. J Bone Joint Surg (Br). 1991;73(5):709–14.
Article
CAS
Google Scholar
Fang DM, Ritter MA, Davis KE. Coronal alignment in total knee arthroplasty: just how important is it? J Arthroplast. 2009;24(6 Suppl):39–43. https://doi.org/10.1016/j.arth.2009.04.034.
Article
Google Scholar
Insall JN, Dorr LD, Scott RD, Scott WN. Rationale of the knee society clinical rating system. Clin Orthop Relat Res. 1989;248:13–4.
Google Scholar
Kuss O, Blettner M, Borgermann J. Propensity score: an alternative method of analyzing treatment effects. Dtsch Arztebl Int. 2016;113(35–36):597–603. https://doi.org/10.3238/arztebl.2016.0597.
Article
PubMed
PubMed Central
Google Scholar
Rassen JA, Shelat AA, Myers J, Glynn RJ, Rothman KJ, Schneeweiss S. One-to-many propensity score matching in cohort studies. Pharmacoepidemiol Drug Saf. 2012;21:269–80. https://doi.org/10.1002/pds.3263.
Article
Google Scholar
Kang KT, Koh YG, Son J, Kwon OR, Park KK. Flexed femoral component improves kinematics and biomechanical effect in posterior stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2019;27(4):1174–81. https://doi.org/10.1007/s00167-018-5093-1.
Article
PubMed
Google Scholar
Okamoto Y, Otsuki S, Nakajima M, Jotoku T, Wakama H, Neo M. Sagittal alignment of the femoral component and patient height are associated with persisting flexion contracture after primary Total knee arthroplasty. J Arthroplast. 2019;34(7):1476–82. https://doi.org/10.1016/j.arth.2019.02.051.
Article
Google Scholar
Scott CEH, Clement ND, Yapp LZ, MacDonald DJ, Patton JT, Burnett R. Association between femoral component sagittal positioning and anterior knee pain in Total knee arthroplasty: a 10-year case-control follow-up study of a cruciate-retaining single-radius design. J Bone Joint Surg Am. 2019;101(17):1575–85. https://doi.org/10.2106/jbjs.18.01096.
Article
PubMed
Google Scholar
Kim YH, Park JW, Kim JS, Park SD. The relationship between the survival of total knee arthroplasty and postoperative coronal, sagittal and rotational alignment of knee prosthesis. Int Orthop. 2014;38(2):379–85. https://doi.org/10.1007/s00264-013-2097-9.
Article
PubMed
Google Scholar
Koenen P, Ates DM, Pfeiffer TR, Bouillon B, Bathis H. Femoral flexion position is a highly variable factor in total knee arthroplasty: an analysis of 593 conventionally aligned total knee replacements. Knee Surg Sports Traumatol Arthrosc. 2019;28(4):1014. https://doi.org/10.1007/s00167-019-05548-6.
Article
PubMed
Google Scholar
Maderbacher G, Schaumburger J, Baier C, Zeman F, Springorum HR, Birkenbach AM, et al. Appropriate sagittal femoral component alignment cannot be ensured by intramedullary alignment rods. Knee Surg Sports Traumatol Arthrosc. 2016;24(8):2453–60. https://doi.org/10.1007/s00167-015-3541-8.
Article
PubMed
Google Scholar
Matassi F, Cozzi Lepri A, Innocenti M, Zanna L, Civinini R, Innocenti M. Total knee arthroplasty in patients with extra-articular deformity: restoration of mechanical alignment using accelerometer-based navigation system. J Arthroplast. 2019;34(4):676–81. https://doi.org/10.1016/j.arth.2018.12.042.
Article
Google Scholar
Malviya A, Lingard EA, Weir DJ, Deehan DJ. Predicting range of movement after knee replacement: the importance of posterior condylar offset and tibial slope. Knee Surg Sports Traumatol Arthrosc. 2009;17(5):491–8. https://doi.org/10.1007/s00167-008-0712-x.
Article
PubMed
Google Scholar
Kang KT, Kwon SK, Son J, Kwon OR, Lee JS, Koh YG. The increase in posterior tibial slope provides a positive biomechanical effect in posterior-stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2018;26(10):3188–95. https://doi.org/10.1007/s00167-018-4925-3.
Article
PubMed
Google Scholar
Banks SA, Harman MK, Hodge WA. Mechanism of anterior impingement damage in total knee arthroplasty. J Bone Joint Surg Am. 2002;84:237–42. https://doi.org/10.2106/00004623-200200002-00004.
Article
Google Scholar
Iorio R, Bolle G, Conteduca F, Valeo L, Conteduca J, Mazza D, et al. Accuracy of manual instrumentation of tibial cutting guide in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2013;21(10):2296–300. https://doi.org/10.1007/s00167-012-2005-7.
Article
CAS
PubMed
Google Scholar
Goh GS, Liow MHL, Tay DK, Lo NN, Yeo SJ, Tan MH. Accelerometer-based and computer-assisted navigation in Total knee arthroplasty: a reduction in mechanical Axis outliers does not Lead to improvement in functional outcomes or quality of life when compared to conventional Total knee arthroplasty. J Arthroplast. 2018;33(2):379–85. https://doi.org/10.1016/j.arth.2017.09.005.
Article
Google Scholar
Hasegawa M, Yoshida K, Wakabayashi H, Sudo A. Cutting and implanting errors in minimally invasive total knee arthroplasty using a navigation system. Int Orthop. 2013;37(1):27–30. https://doi.org/10.1007/s00264-012-1688-1.
Article
PubMed
Google Scholar
Catani F, Biasca N, Ensini A, Leardini A, Bianchi L, Digennaro V, et al. Alignment deviation between bone resection and final implant positioning in computer-navigated total knee arthroplasty. J Bone Joint Surg Am. 2008;90(4):765–71. https://doi.org/10.2106/jbjs.G.00293.
Article
PubMed
Google Scholar
da Assunção RE, Hancock NJ, Bruce WJ, Walker P. The limits of precision in conventionally instrumented computer-navigated total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2012;20(12):2528–34. https://doi.org/10.1007/s00167-012-1952-3.
Article
PubMed
Google Scholar
Fujimoto E, Sasashige Y, Nakata K, Yokota G, Omoto T, Ochi M. Technical considerations and accuracy improvement of accelerometer-based portable computer navigation for performing distal femoral resection in Total knee arthroplasty. J Arthroplast. 2017;32(1):53–60. https://doi.org/10.1016/j.arth.2016.05.067.
Article
Google Scholar
Delp SL, Stulberg SD, Davies B, Picard F, Leitner F. Computer assisted knee replacement. Clin Orthop Relat Res. 1998;354:49–56. https://doi.org/10.1097/00003086-199809000-00007.
Article
Google Scholar
Shah SM, Sciberras NC, Allen DJ, Picard F. Technical and surgical causes of outliers after computer navigated total knee arthroplasty. J Orthop. 2020;1:18171–6. https://doi.org/10.1016/j.jor.2019.10.016.
Article
Google Scholar
Mori S, Akagi M, Asada S, Matsushita T, Hashimoto K. Tibia vara affects the aspect ratio of tibial resected surface in female Japanese patients undergoing TKA. Clin Orthop Relat Res. 2013;471(5):1465–71. https://doi.org/10.1007/s11999-013-2800-6.
Article
PubMed
PubMed Central
Google Scholar
Sikorski JM. Alignment in total knee replacement. J Bone Joint Surg (Br). 2008;90(9):1121–7. https://doi.org/10.1302/0301-620x.90b9.20793.
Article
CAS
Google Scholar
D'Lima DD, Hermida JC, Chen PC, Colwell CW Jr. Polyethylene wear and variations in knee kinematics. Clin Orthop Relat Res. 2001;392:124–30. https://doi.org/10.1097/00003086-200111000-00015.
Article
Google Scholar
Green GV, Berend KR, Berend ME, Glisson RR, Vail TP. The effects of varus tibial alignment on proximal tibial surface strain in total knee arthroplasty: the posteromedial hot spot. J Arthroplast. 2002;17(8):1033–9. https://doi.org/10.1054/arth.2002.35796.
Article
Google Scholar
Werner FW, Ayers DC, Maletsky LP, Rullkoetter PJ. The effect of valgus/varus malalignment on load distribution in total knee replacements. J Biomech. 2005;38(2):349–55. https://doi.org/10.1016/j.jbiomech.2004.02.024.
Article
PubMed
Google Scholar
Bellemans J, Colyn W, Vandenneucker H, Victor J. The Chitranjan Ranawat award: is neutral mechanical alignment normal for all patients? The concept of constitutional varus. Clin Orthop Relat Res. 2012;470(1):45–53. https://doi.org/10.1007/s11999-011-1936-5.
Article
PubMed
Google Scholar
Hutt JR, LeBlanc MA, Massé V, Lavigne M, Vendittoli PA. Kinematic TKA using navigation: surgical technique and initial results. Orthop Traumatol Surg Res. 2016;102(1):99–104. https://doi.org/10.1016/j.otsr.2015.11.010.
Article
CAS
PubMed
Google Scholar
Lee YS, Howell SM, Won YY, Lee OS, Lee SH, Vahedi H, et al. Kinematic alignment is a possible alternative to mechanical alignment in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2017;25(11):3467–79. https://doi.org/10.1007/s00167-017-4558-y.
Article
PubMed
Google Scholar
Keshmiri A, Maderbacher G, Baier C, Benditz A, Grifka J, Greimel F. Kinematic alignment in total knee arthroplasty leads to a better restoration of patellar kinematics compared to mechanic alignment. Knee Surg Sports Traumatol Arthrosc. 2019;27(5):1529–34. http://doi.org/. https://doi.org/10.1007/s00167-018-5284-9.
Article
PubMed
Google Scholar
Blakeney W, Clément J, Desmeules F, Hagemeister N, Rivière C, Vendittoli PA. Kinematic alignment in total knee arthroplasty better reproduces normal gait than mechanical alignment. Knee Surg Sports Traumatol Arthrosc. 2019;27(5):1410–7. https://doi.org/10.1007/s00167-018-5174-1.
Article
PubMed
Google Scholar
McEwen PJ, Dlaska CE, Jovanovic IA, Doma K, Brandon BJ. Computer-assisted kinematic and mechanical Axis Total knee arthroplasty: a prospective randomized controlled trial of bilateral simultaneous surgery. J Arthroplast. 2020;35(2):443–50. https://doi.org/10.1016/j.arth.2019.08.064.
Article
Google Scholar
An VVG, Twiggs J, Leie M, Fritsch BA. Kinematic alignment is bone and soft tissue preserving compared to mechanical alignment in total knee arthroplasty. Knee. 2019;26(2):466–76. https://doi.org/10.1016/j.knee.2019.01.002.
Article
PubMed
Google Scholar
Howell SM, Shelton TJ, Hull ML. Implant survival and function ten years after Kinematically aligned Total knee arthroplasty. J Arthroplast. 2018;33(12):3678–84. https://doi.org/10.1016/j.arth.2018.07.020.
Article
Google Scholar
Friedman RJ. Navigation in Total Knee Arthroplasty: A Procedure Whose Time Has Not Come: Commentary on an article by Young-Hoo Kim, MD, et al.: “The Clinical Outcome of Computer-Navigated Compared with Conventional Knee Arthroplasty in the Same Patients. A Prospective, Randomized, Double-Blind, Long-Term Study”. J Bone Joint Surg Am. 2017;99(12):e64. https://doi.org/10.2106/jbjs.17.00208.
Article
PubMed
Google Scholar
Novak EJ, Silverstein MD, Bozic KJ. The cost-effectiveness of computer-assisted navigation in total knee arthroplasty. J Bone Joint Surg Am. 2007;89(11):2389–97. https://doi.org/10.2106/jbjs.F.01109.
Article
PubMed
Google Scholar
Demir B, Ozkul B, Saygili MS, Cetinkaya E, Akbulut D. Deformity correction with total knee arthroplasty for severe knee osteoarthritis accompanying extra-articular femoral deformity: the results are promising. Knee Surg Sports Traumatol Arthrosc. 2018;26(11):3444–51. https://doi.org/10.1007/s00167-018-4920-8.
Article
CAS
PubMed
Google Scholar
Kazemi SM, Shafaghi T, Minaei R, Osanloo R, Abrishamkarzadeh H, Safdari F. The effect of sagittal femoral bowing on the femoral component position in Total knee arthroplasty. Arch Bone Jt Surg. 2017;5(4):250–4.
PubMed
PubMed Central
Google Scholar