Scher AT. Catastrophic rugby injuries of the spinal cord: changing patterns of injury. Br J Sports Med. 1991;25(1):57–60. https://doi.org/10.1136/bjsm.25.1.57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Torg JS, Guille JT, Jaffe S. Injuries to the cervical spine in American football players. J Bone Joint Surg Am. 2002;84:112–22.
Article
Google Scholar
Holzapfel GA, Schulze-Bauer CAJ, Feigl G, Regitnig P. Single lamellar mechanics of the human lumbar anulus fibrosus. Biomech Model Mechanobiol. 2005;3(3):125–40. https://doi.org/10.1007/s10237-004-0053-8.
Article
CAS
PubMed
Google Scholar
Schmidt H, Heuer F, Simon U, Kettler A, Rohlmann A, Claes L, Wilke HJ. Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus. Clin Biomech. 2006;21(4):337–44. https://doi.org/10.1016/j.clinbiomech.2005.12.001.
Article
Google Scholar
Yoganandan N, Kumaresan S, Pintar FA. Geometric and mechanical properties of human cervical spine ligaments. J Biomech Eng. 2000;122(6):623–9. https://doi.org/10.1115/1.1322034.
Article
CAS
PubMed
Google Scholar
Shirazi-Adl A. On the fibre composite material models of disc annulus-comparison of predicted stresses. J Biomech. 1989;22(4):357–65. https://doi.org/10.1016/0021-9290(89)90050-X.
Article
CAS
PubMed
Google Scholar
Kemper AR, McNally C, Duma SM. The influence of strain rate on the compressive stiffness properties of human lumbar intervertebral discs. Biomed Sci Instrum. 2007;43:176–81.
PubMed
Google Scholar
Naserkhaki S, Arjmand N, Shirazi-Adl A, Farahmand F, El-Rich M. Effects of eight different ligament property datasets on biomechanics of a lumbar L4-L5 finite element model. J Biomech. 2018;70:33–42. https://doi.org/10.1016/j.jbiomech.2017.05.003.
Article
CAS
PubMed
Google Scholar
Dreischarf M, Zander T, Shirazi-Adl A, Puttlitz CM, Adam CJ, Chen CS, Goel VK, Kiapour A, Kim YH, Labus KM, Little JP, Park WM, Wang YH, Wilke HJ, Rohlmann A, Schmidt H. Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together. J Biomech. 2014;47(8):1757–66. https://doi.org/10.1016/j.jbiomech.2014.04.002.
Article
CAS
PubMed
Google Scholar
Schmidt H, Heuer F, Drumm J, Klezl Z, Claes L, Wilke HJ. Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin Biomech. 2007;22(4):377–84. https://doi.org/10.1016/j.clinbiomech.2006.11.008.
Article
Google Scholar
Östh J, Brolin K, Svensson MY, Linder A. A Female Ligamentous Cervical Spine Finite Element Model Validated for Physiological Loads. J Biomech Eng. 2016;138(6):061005.
Article
Google Scholar
Schmidt H, Shirazi-Adl A, Galbusera F, Wilke HJ. Response analysis of the lumbar spine during regular daily activities-a finite element analysis. J Biomech. 2010;43(10):1849–56. https://doi.org/10.1016/j.jbiomech.2010.03.035.
Article
PubMed
Google Scholar
Rohlmann A, Graichen F, Kayser R, Bender A, Bergmann G. Loads on a telemeterized vertebral body replacement measured in two patients. Spine (Phila Pa 1976). 2008;33(11):1170–9. https://doi.org/10.1097/BRS.0b013e3181722d52.
Article
Google Scholar
Wilke H, Neef P, Caimi M, Hoogland T, Claes LE. New In Vivo measurements of pressures in the intervertebral disc in daily life. Spine (Phila Pa 1976). 1999;24(8):755.
Article
CAS
Google Scholar
Brolin K, Halldin P. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics. Spine (Phila Pa 1976). 2004;29(4):376–85. https://doi.org/10.1097/01.BRS.0000090820.99182.2D.
Article
Google Scholar
Mattucci SFE, Cronin DS. A method to characterize average cervical spine ligament response based on raw data sets for implementation into injury biomechanics models. J Mech Behav Biomed Mater. 2015;41:251–60. https://doi.org/10.1016/j.jmbbm.2014.09.023.
Article
PubMed
Google Scholar
Mattucci SFE, Moulton JA, Chandrashekar N, Cronin DS. Strain rate dependent properties of younger human cervical spine ligaments. J Mech Behav Biomed Mater. 2012;10:216–26. https://doi.org/10.1016/j.jmbbm.2012.02.004.
Article
PubMed
Google Scholar
Sterba M, Aubin CÉ, Wagnac E, Fradet L, Arnoux PJ. Effect of impact velocity and ligament mechanical properties on lumbar spine injuries in posterior-anterior impact loading conditions: a finite element study. Med Biol Eng Comput. 2019;57(6):1381–92. https://doi.org/10.1007/s11517-019-01964-5.
Article
PubMed
Google Scholar
Galbusera F, Schmidt H, Noailly J, Malandrino A, Lacroix D, Wilke HJ, Shirazi-Adl A. Comparison of four methods to simulate swelling in poroelastic finite element models of intervertebral discs. J Mech Behav Biomed Mater. 2011;4(7):1234–41. https://doi.org/10.1016/j.jmbbm.2011.04.008.
Article
PubMed
Google Scholar
Naserkhaki S, Jaremko JL, Adeeb S, El-Rich M. On the load-sharing along the ligamentous lumbosacral spine in flexed and extended postures: finite element study. J Biomech. 2016;49(6):974–82. https://doi.org/10.1016/j.jbiomech.2015.09.050.
Article
PubMed
Google Scholar
Iatridis JC, Setton LA, Foster RJ, Rawlins BA, Weidenbaum M, Mow VC. Degeneration affects the anisotropic and nonlinear behaviors of human anulus fibrosus in compression. J Biomech. 1998;31(6):535–44. https://doi.org/10.1016/S0021-9290(98)00046-3.
Article
CAS
PubMed
Google Scholar
Mustafy T, Moglo K, Adeeb S, El-Rich M. Injury mechanisms of the ligamentous cervical C2-C3 functional spinal unit to complex loading modes: finite element study. J Mech Behav Biomed Mater. 2016;53:384–96. https://doi.org/10.1016/j.jmbbm.2015.08.042.
Article
PubMed
Google Scholar
Arjmand N, Shirazi-Adl A, Parnianpour M. Trunk biomechanical models based on equilibrium at a single-level violate equilibrium at other levels. Eur Spine J. 2007;16(5):701–9. https://doi.org/10.1007/s00586-006-0263-0.
Article
CAS
PubMed
Google Scholar
Komeili A, Abusara Z, Federico S, Herzog W. Effect of strain rate on transient local strain variations in articular cartilage. J Mech Behav Biomed Mater. 2019;95:60–6. https://doi.org/10.1016/j.jmbbm.2019.03.022.
Article
PubMed
Google Scholar
Brolin K, Hedenstierna S, Halldin P, Bass C, Alem N. The importance of muscle tension on the outcome of impacts with a major vertical component. Int J Crashworthiness. 2008;13(5):487–98. https://doi.org/10.1080/13588260802215510.
Article
Google Scholar
Cai XY, YuChi CX, Du CF, Mo ZJ. The effect of follower load on the range of motion, facet joint force, and intradiscal pressure of the cervical spine: a finite element study. Med Biol Eng Comput. 2020;58(8):1695–705. https://doi.org/10.1007/s11517-020-02189-7.
Article
PubMed
Google Scholar
Khoddam-Khorasani P, Arjmand N, Shirazi-Adl A. Effect of changes in the lumbar posture in lifting on trunk muscle and spinal loads: a combined in vivo, musculoskeletal, and finite element model study. J Biomech. 2020;104:109728. https://doi.org/10.1016/j.jbiomech.2020.109728.
Article
CAS
PubMed
Google Scholar
Eskandari AH, Arjmand N, Shirazi-Adl A, Farahmand F. Hypersensitivity of trunk biomechanical model predictions to errors in image-based kinematics when using fully displacement-control techniques. J Biomech. 2019;84:161–71. https://doi.org/10.1016/j.jbiomech.2018.12.043.
Article
CAS
PubMed
Google Scholar
Park WM, Kim K, Kim YH. Effects of degenerated intervertebral discs on intersegmental rotations, intradiscal pressures, and facet joint forces of the whole lumbar spine. Comput Biol Med. 2013;43(9):1234–40. https://doi.org/10.1016/j.compbiomed.2013.06.011.
Article
PubMed
Google Scholar
Ehlers W, Karajan N, Markert B. A porous media model describing the inhomogeneous behaviour of the human intervertebral disc. Materwiss Werksttech. 2006;37(6):546–51. https://doi.org/10.1002/mawe.200600035.
Article
CAS
Google Scholar
Ehlers W, Karajan N, Markert B. An extended biphasic model for charged hydrated tissues with application to the intervertebral disc. Biomech Model Mechanobiol. 2009;8(3):233–51. https://doi.org/10.1007/s10237-008-0129-y.
Article
CAS
PubMed
Google Scholar
Williams JR, Natarajan RN, Andersson GBJ. Inclusion of regional poroelastic material properties better predicts biomechanical behavior of lumbar discs subjected to dynamic loading. J Biomech. 2007;40(9):1981–7. https://doi.org/10.1016/j.jbiomech.2006.09.022.
Article
PubMed
Google Scholar
Natarajan RN, Williams JR, Andersson GBJ. Recent advances in analytical modeling of lumbar disc degeneration. Spine (Phila Pa 1976). 2004;29:2733–41.
Article
Google Scholar
Barker JB, Cronin DS, Nightingale RW. Lower cervical spine motion segment computational model validation: kinematic and kinetic response for quasistatic and dynamic loading. J Biomech Eng. 2017;139:6.
Article
Google Scholar
Nikkhoo M, Haghpanahi M, Parnianpour M, Wang JL. An axisymmetric poroelastic model for description of the short-term and long-term creep behavior of L4-L5 intervertebral disc. In: 2011 1st Middle East Conference on Biomedical Engineering, MECBME 2011; 2011. p. 308–11.
Google Scholar
Malandrino A, Planell JA, Lacroix D. Statistical factorial analysis on the poroelastic material properties sensitivity of the lumbar intervertebral disc under compression, flexion and axial rotation. J Biomech. 2009;42(16):2780–8. https://doi.org/10.1016/j.jbiomech.2009.07.039.
Article
PubMed
Google Scholar
Panjabi MM, Summers DJ, Pelker RR, Videman T, Friedlaender GE, Southwick WO. Three-dimensional load-displacement curves due to froces on the cervical spine. J Orthop Res. 1986;4(2):152–61. https://doi.org/10.1002/jor.1100040203.
Article
CAS
PubMed
Google Scholar
Panjabi MM, Crisco JJ, Vasavada A, Oda T, Cholewicki J, Nibu K, Shin E. Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves. Spine (Phila Pa 1976). 2001;26(24):2692–700. https://doi.org/10.1097/00007632-200112150-00012.
Article
CAS
Google Scholar
Bell KM, Yan Y, Debski RE, Sowa GA, Kang JD, Tashman S. Influence of varying compressive loading methods on physiologic motion patterns in the cervical spine. J Biomech. 2016;49(2):167–72. https://doi.org/10.1016/j.jbiomech.2015.11.045.
Article
PubMed
Google Scholar
Emanuel KS, van der Veen AJ, Rustenburg CME, Smit TH, Kingma I. Osmosis and viscoelasticity both contribute to time-dependent behaviour of the intervertebral disc under compressive load: a caprine in vitro study. J Biomech. 2018;70:10–5. https://doi.org/10.1016/j.jbiomech.2017.10.010.
Article
PubMed
Google Scholar
Bell K, Yan Y, Dugan T, Kang J. Effect of follower load application on intact cervical spine kinetics. In: ORS 2013 Annual Meeting. Pittsburgh; 2013.
Google Scholar
Moghaddam F. A 3D continuum finite element muscle model for the investigation of cervical spine load-sharing mechanisms and injury assessment during impact loading scenarios by Fatemeh Moghaddam; 2018.
Google Scholar
Panjabi MM, Oxland TR, Parks EH. Quantitative anatomy of cervical spine ligaments. Part ii. Middle and lower cervical spine. J Spinal Disord. 1991;4(3):278–85.
Google Scholar
Yoganandan N, Kumaresan S, Pintar FA. Biomechanics of the cervical spine. Part 2. Cervical spine soft tissue responses and biomechanical modeling. Clin Biomech Elsevier Science Ltd. 2001;16:1–27.
Article
CAS
Google Scholar
Panjabi M, Dvorak J, Crisco JJ, Oda T, Hilibrand A, Grob D. Flexion, extension, and lateral bending of the upper cervical spine in response to alar ligament transections. J Spinal Disord. 1991;4(2):157–67. https://doi.org/10.1097/00002517-199106000-00005.
Article
CAS
PubMed
Google Scholar
Panjabi M, Dvorak J, Crisco JJ, Oda T, Wang P, Grob D. Effects of alar ligament transection on upper cervical spine rotation. J Orthop Res. 1991;9(4):584–93. https://doi.org/10.1002/jor.1100090415.
Article
CAS
PubMed
Google Scholar
Mustafy T, El-Rich M, Mesfar W, Moglo K. Investigation of impact loading rate effects on the ligamentous cervical spinal load-partitioning using finite element model of functional spinal unit C2-C3. J Biomech. 2014;47(12):2891–903. https://doi.org/10.1016/j.jbiomech.2014.07.016.
Article
PubMed
Google Scholar
El-Rich M, Arnoux PJ, Wagnac E, Brunet C, Aubin CE. Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions. J Biomech. 2009;42(9):1252–62. https://doi.org/10.1016/j.jbiomech.2009.03.036.
Article
PubMed
Google Scholar
Reilly DT, Burstein AH, Frankel VH. The elastic modulus for bone. J Biomech. 1974;7(3):271.
Article
CAS
Google Scholar
DeWit JA, Cronin DS. Cervical spine segment finite element model for traumatic injury prediction. J Mech Behav Biomed Mater. 2012;10:138–50. https://doi.org/10.1016/j.jmbbm.2012.02.015.
Article
PubMed
Google Scholar
Kopperdahl DL, Keaveny TM. Yield strain behavior of trabecular bone. J Biomech. 1998;31(7):601–8. https://doi.org/10.1016/S0021-9290(98)00057-8.
Article
CAS
PubMed
Google Scholar
Wagnac E, Arnoux P-J, Anaïs G, Aubin C-E. Finite element analysis of the influence of loading rate on a model of the full lumbar spine under dynamic loading conditions. Med Biol Eng Comput. 2012;50(9):903–15. https://doi.org/10.1007/s11517-012-0908-6.
Article
PubMed
Google Scholar
Tchako A, Sadegh AM. Stress changes in intervertebral discs of the cervical spine after partial fusion. In: American Society of Mechanical Engineers, Bioengineering Division (Publication) BED. American Society of Mechanical Engineers (ASME); 2003. p. 375–6.
Google Scholar
Sadegh AM, Abraham T. Vertebral stress of a cervical spine model under dynamic load. Technol Health Care. 2000;8(2):143–54. https://doi.org/10.3233/THC-2000-8205.
Article
CAS
PubMed
Google Scholar
Wagnac E, Arnoux PJP-J, Garo A, Aubin C-EC, Anaïs G, et al. Finite element analysis of the influence of loading rate on a model of the full lumbar spine under dynamic loading conditions. Med Biol Eng Comput. 2012;50(9):903–15. https://doi.org/10.1007/s11517-012-0908-6.
Article
PubMed
Google Scholar
Yoganandan N, Pintar FA, Maiman DJ, Cusick JF, Sances A, Walsh PR. Human head- neck biomechanics under axial tension. Med Eng Phys. 1996;18(4):289–94. https://doi.org/10.1016/1350-4533(95)00054-2.
Article
CAS
PubMed
Google Scholar
Yang KH, Kish VL. Compressibility measurement of human intervertebral nucleus pulposus. J Biomech Biomech. 1988;21(10):865.
Article
Google Scholar
Kleinberger M. Application of Finite Element Techniques to the Study of Cervical Spine Mechanics. In: 37th Stapp Car Crash Conference; 1993. p. 261–72.
Google Scholar
Skrzypiec DM, Pollintine P, Przybyla A, Dolan P, Adams MA. The internal mechanical properties of cervical intervertebral discs as revealed by stress profilometry. Eur Spine J. 2007;16(10):1701–9. https://doi.org/10.1007/s00586-007-0458-z.
Article
PubMed
PubMed Central
Google Scholar
Yoganandan N, Pintar FA, Zhang J, Baisden JL. Physical properties of the human head: Mass, center of gravity and moment of inertia. J Biomech Elsevier. 2009;42:1177–92.
Article
Google Scholar
Plagenhoef S, Gaynor Evans F, Abdelnour T. Anatomical data for analyzing human motion. Res Q Exerc Sport. 1983;54(2):169–78. https://doi.org/10.1080/02701367.1983.10605290.
Article
Google Scholar
Motiwale S, Subramani AV, Zhou X, Kraft RH. Damage prediction for a cervical spine intervertebral disc. In: ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE). American Society of Mechanical Engineers (ASME); 2016.
Book
Google Scholar
Liu Q, Guo Q, Yang J, Zhang P, Xu T, Cheng X, Chen J, Guan H, Ni B. Subaxial cervical Intradiscal pressure and segmental kinematics following Atlantoaxial fixation in different angles. World Neurosurg. 2016;87:521–8. https://doi.org/10.1016/j.wneu.2015.09.025.
Article
PubMed
Google Scholar
Dehghan-Hamani I, Arjmand N, Shirazi-Adl A. Subject-specific loads on the lumbar spine in detailed finite element models scaled geometrically and kinematic-driven by radiography images. Int J Numer Method Biomed Eng. 2019;35(4):e3182. https://doi.org/10.1002/cnm.3182.
Article
PubMed
Google Scholar
Yoganandan N, Umale S, Stemper B, Snyder B. Fatigue responses of the human cervical spine intervertebral discs. J Mech Behav Biomed Mater. 2017;69:30–8. https://doi.org/10.1016/j.jmbbm.2016.11.026.
Article
PubMed
Google Scholar
Leatt P, Reilly T, Troup JGD. Spinal loading during circuit weight-training and running. JSports Med. 1986;20(3):119–24.
CAS
Google Scholar
Adams MA. Biomechanics of back pain. Acupunct Med Br Med Acupunct Soc. 2004;22:178–88.
Article
Google Scholar