Bohsali KI, Wirth MA, RockwoodJr CA. Complications of total shoulder arthroplasty. J Bone Jt Surg. 2006;88:2279–92.
Google Scholar
Farron A, Terrier A, Büchler P. Risks of loosening of a prosthetic glenoid implanted in retroversion. J Shoulder Elb Surg Am Shoulder Elb Surg Al. 2006;15:521–6.
Article
Google Scholar
Sirveaux F, Favard L, Oudet D, Huquet D, Walch G, Mole D. Grammont inverted total shoulder arthroplasty in the treatment of glenohumeral osteoarthritis with massive rupture of the cuff RESULTS OF a MULTICENTRE STUDY OF 80 SHOULDERS. J Bone Joint Surg Br. 2004;86:388–95.
Article
CAS
Google Scholar
Verborgt O, De Smedt T, Vanhees M, Clockaerts S, Parizel PM, Van Glabbeek F. Accuracy of placement of the glenoid component in reversed shoulder arthroplasty with and without navigation. J Shoulder Elb Surg. 2011;20:21–6.
Article
Google Scholar
Kwon YW, Powell KA, Yum JK, Brems JJ, Iannotti JP. Use of three-dimensional computed tomography for the analysis of the glenoid anatomy. J Shoulder Elb Surg. 2005;14:85–90.
Article
Google Scholar
Bicknell RT, DeLude JA, Kedgley AE, Ferreira LM, Dunning CE, King GJW, et al. Early experience with computer-assisted shoulder hemiarthroplasty for fractures of the proximal humerus: development of a novel technique and an in vitro comparison with traditional methods. J Shoulder Elb Surg. 2007;16:S117–25.
Article
Google Scholar
Codsi MJ, Bennetts C, Gordiev K, Boeck DM, Kwon Y, Brems J, et al. Normal glenoid vault anatomy and validation of a novel glenoid implant shape. J Shoulder Elb Surg. 2008;17:471–8.
Article
Google Scholar
Edwards TB, Gartsman GM, O’Connor DP, Sarin VK. Safety and utility of computer-aided shoulder arthroplasty. J Shoulder Elb Surg. 2008;17:503–8.
Article
Google Scholar
Matsen FA, Boileau P, Walch G, Gerber C, Bicknell RT. The reverse Total shoulder arthroplasty. J Bone Joint Surg Am. 2006;88A:660–7.
Google Scholar
Middernacht B, De Roo P-J, Van Maele G, De Wilde LF. Consequences of scapular anatomy for reversed total shoulder arthroplasty. Clin Orthop. 2008;466:1410–8.
Article
Google Scholar
Lewis GS, Bryce CD, Davison AC, Hollenbeak CS, Piazza SJ, Armstrong AD. Location of the optimized centerline of the glenoid vault: a comparison of two operative techniques with use of three-dimensional computer modeling. J Bone Joint Surg Am. 2010;92:1188–94.
Article
Google Scholar
Hendel MD, Bryan JA, Barsoum WK, Rodriguez EJ, Brems JJ, Evans PJ, et al. Comparison of patient-specific instruments with standard surgical instruments in determining glenoid component position: a randomized prospective clinical trial. J Bone Joint Surg Am. 2012;94:2167–75.
Article
Google Scholar
Throckmorton TW, Gulotta LV, Bonnarens FO, Wright SA, Hartzell JL, Rozzi WB, et al. Patient-specific targeting guides compared with traditional instrumentation for glenoid component placement in shoulder arthroplasty: a multi-surgeon study in 70 arthritic cadaver specimens. J Shoulder Elb Surg. 2015;24:965–71.
Article
Google Scholar
Verborgt O, Vanhees M, Heylen S, Hardy P, Declercq G, Bicknell R. Computer navigation and patient-specific instrumentation in shoulder arthroplasty. Sports Med Arthrosc Rev. 2014;22:e42–9.
Article
Google Scholar
Walch G, Vezeridis PS, Boileau P, Deransart P, Chaoui J. Three-dimensional planning and use of patient-specific guides improve glenoid component position: an in vitro study. J Shoulder Elb Surg. 2015;24:302–9.
Article
Google Scholar
Konrad G, Zwingmann J, Kotter E, Südkamp N, Oberst M. Variabilität der Schraubenlage bei 3D-navigierter Sakrumverschraubung. Unfallchirurg. 2010;113:29–35.
Article
CAS
Google Scholar
Zwingmann J, Hauschild O, Bode G, Südkamp NP, Schmal H. Malposition and revision rates of different imaging modalities for percutaneous iliosacral screw fixation following pelvic fractures: a systematic review and meta-analysis. Arch Orthop Trauma Surg. 2013;133:1257–65.
Article
Google Scholar
Nguyen D, Ferreira LM, Brownhill JR, King GJW, Drosdowech DS, Faber KJ, et al. Improved accuracy of computer assisted glenoid implantation in total shoulder arthroplasty: an in-vitro randomized controlled trial. J Shoulder Elb Surg. 2009;18:907–14.
Article
Google Scholar
Nguyen D, Ferreira LM, Brownhill JR, Faber KJ, Johnson JA. Design and development of a computer assisted glenoid implantation technique for shoulder replacement surgery. Comput Aided Surg. 2007;12:152–9.
Article
Google Scholar
Kircher J, Wiedemann M, Magosch P, Lichtenberg S, Habermeyer P. Improved accuracy of glenoid positioning in total shoulder arthroplasty with intraoperative navigation: a prospective-randomized clinical study. J Shoulder Elb Surg. 2009;18:515–20.
Article
Google Scholar
Sadoghi P, Vavken J, Leithner A, Vavken P. Benefit of intraoperative navigation on glenoid component positioning during total shoulder arthroplasty. Arch Orthop Trauma Surg. 2015;135:41–7.
Article
Google Scholar
Stübig T, Petri M, Zeckey C, Hawi N, Krettek C, Citak M, et al. 3D navigated implantation of the glenoid component in reversed shoulder arthroplasty. Feasibility and results in an anatomic study. Int J Med Robot. 2013;9:480–5.
Article
Google Scholar
Theopold J, Pieroh P, Scharge ML, Marquaß B, Hohmann T, Josten C, et al. Improved accuracy of K-wire positioning into the glenoid vault by intraoperative 3D image intensifier-based navigation for the glenoid component in shoulder arthroplasty. Orthop Traumatol Surg Res. 2016;102:575–81.
Article
CAS
Google Scholar
Stübig T, Kendoff D, Citak M, Geerling J, Khalafi A, Krettek C, et al. Comparative study of different intraoperative 3-D image intensifiers in orthopedic trauma care. J Trauma Inj Infect Crit Care. 2009;66:821–30.
Article
Google Scholar
Codman. The Shoulder. Rupture of the supraspinatus tendon and other lesions in or about the subacromial bursa. Todd. 1934;:pp 318–319.
Neer CS II. Four-segment classification of proximal humeral fractures: purpose and reliable use. J Shoulder Elb Surg. 2002;11:389–400.
Article
Google Scholar
Lädermann A, Denard PJ. Arthroscopic Glenohumeral arthrodesis with O-arm navigation. Arthrosc Tech. 2014;3:e205–9.
Article
Google Scholar
Kotsianos D, Wirth S, Fischer T, Euler E, Rock C, Linsenmaier U, et al. 3D imaging with an isocentric mobile C-arm. Eur Radiol. 2004;14:1590–5.
Article
Google Scholar
Stuby F, Seethaler AC, Shiozawa T. Vergleich der Bildqualität zweier unterschiedlicher mobiler 3-dimensionaler Röntgen-C-Bögen mit einem konventionellen CT bei der Darstellung relevanter Strukturen am knöchernen Becken. Z Orthop Unf. 2011;149:659–67.
Article
CAS
Google Scholar
Kotsianos D, Rock C, Wirth S, Linsenmaier U, Brandl R, Fischer T, et al. Frakturdiagnostik am Kniegelenk mit einem neuen mobilen CT-System (ISO-C-3D): Vergleich mit konventionellem Röntgen und Spiral-CT. RöFo - Fortschritte Auf Dem Geb Röntgenstrahlen Bildgeb Verfahr. 2002;174:82–7.
Article
CAS
Google Scholar
Frankle MA, Teramoto A, Luo Z-P, Levy JC, Pupello D. Glenoid morphology in reverse shoulder arthroplasty: classification and surgical implications. J Shoulder Elb Surg Am Shoulder Elb Surg Al. 2009;18:874–85.
Article
Google Scholar
Ohashi K, El-Khoury GY, Bennett DL, Restrepo JM, Berbaum KS. Orthopedic hardware complications diagnosed with multi–detector row CT. Radiology. 2005;237:570–7.
Article
Google Scholar