Kane WJ. Scoliosis prevalence: a call for a statement of terms. Clin Orthop Relat Res. 1997;126:43–6.
Google Scholar
Weinstein SL. Natural history. Spine (Phila Pa 1976). 1999;24(24):2592–600.
Article
CAS
Google Scholar
Johnston CE, Richards BS, Sucato DJ, Bridwell KH, Lenke LG, Erickson M, Spinal Deformity Study Group. Correlation of preoperative deformity magnitude and pulmonary function tests in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2011;36(14):1096–102.
Article
Google Scholar
Theroux J, Le May S, Hebert JJ, Labelle H. Back pain prevalence is associated with curve-type and severity in adolescents with idiopathic scoliosis: a cross-sectional study. Spine (Phila Pa 1976). 2017;42(15):E914–9.
Article
Google Scholar
Lonstein JE. Scoliosis: surgical versus nonsurgical treatment. Clin Orthop Relat Res. 2006;443:248–59.
Article
Google Scholar
Coe JD, Arlet V, Donaldson W, Berven S, Hanson DS, Mudiyam R, Perra JH, Shaffrey CI. Complications in spinal fusion for adolescent idiopathic scoliosis in the new millennium. A report of the Scoliosis Research Society morbidity and mortality committee. Spine (Phila Pa 1976). 2006;31(3):345–9.
Article
Google Scholar
Takahashi Y, Kou I, Takahashi A, Johnson TA, Kono K, Kawakami N, Uno K, Ito M, Minami S, Yanagida H, Taneichi H, Tsuji T, Suzuki T, Sudo H, Kotani T, Watanabe K, Chiba K, Hosono N, Kamatani N, Tsunoda T, Toyama Y, Kubo M, Matsumoto M, Ikegawa S. A genome-wide association study identifies common variants near LBX1 associated with adolescent idiopathic scoliosis. Nat Genet. 2011;43(12):1237–40.
Article
CAS
Google Scholar
Kou I, Takahashi Y, Johnson TA, Takahashi A, Guo L, Dai J, Qiu X, Sharma S, Takimoto A, Ogura Y, Jiang H, Yan H, Kono K, Kawakami N, Uno K, Ito M, Minami S, Yanagida H, Taneichi H, Hosono N, Tsuji T, Suzuki T, Sudo H, Kotani T, Yonezawa I, Londono D, Gordon D, Herring JA, Watanabe K, Chiba K, Kamatani N, Jiang Q, Hiraki Y, Kubo M, Toyama Y, Tsunoda T, Wise CA, Qiu Y, Shukunami C, Matsumoto M, Ikegawa S. Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis. Nat Genet. 2013;45(6):676–9.
Article
CAS
Google Scholar
Schlösser TP, van der Heijden GJ, Versteeg AL, Castelein RM. How “idiopathic” is adolescent idiopathic scoliosis? A systematic review on associated abnormalities. PLoS One. 2014;9(5):e97461.
Article
Google Scholar
Zhuang Q, Li J, Wu Z, Zhang J, Sun W, Li T, Yan Y, Jiang Y, Zhao RC, Qiu G. Differential proteome analysis of bone marrow mesenchymal stem cells from adolescent idiopathic scoliosis patients. PLoS One. 2011;6(4):e18834.
Article
CAS
Google Scholar
Ishida K, Aota Y, Mitsugi N, Kono M, Higashi T, Kawai T, Yamada K, Niimura T, Kaneko K, Tanabe H, Ito Y, Katsuhata T, Saito T. Relationship between bone density and bone metabolism in adolescent idiopathic scoliosis. Scoliosis. 2015;10(19):9.
Article
Google Scholar
Wang WJ, Sun C, Liu Z, Sun X, Zhu F, Zhu ZZ, Qiu Y. Transcription factor Runx2 in the low bone mineral density of girls with adolescent idiopathic scoliosis. Orthop Surg. 2014;6(1):8–14.
Article
Google Scholar
Lenke LG, Betz RR, Harms J, Bridwell KH, Clements DH, Lowe TG, Blanke K. Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am. 2001;83-A(8):1169–81.
Article
Google Scholar
Burwell RG. Aetiology of idiopathic scoliosis: current concepts. Pediatr Rehabil. 2003;6(3–4):137–70.
Article
CAS
Google Scholar
Burwell RG, Clark EM, Dangerfield PH, Moulton A. Adolescent idiopathic scoliosis (AIS): a multifactorial cascade concept for pathogenesis and embryonic origin. Scoliosis Spinal Disord. 2016;11(30):8.
Article
Google Scholar
Mi H, Muruganujan A, Casagrande JT, Thomas PD. Large-scale gene function analysis with the PANTHER classification system. Nat Protoc. 2013;8(8):1551–66.
Article
Google Scholar
Ryan KM, O'Brien K, Regan I, O'Byrne JM, Moore D, Kelly PM, Noel J, Butler J, Nolan B, Kiely PJ. The prevalence of abnormal preoperative coagulation tests in pediatric patients undergoing spinal surgery for scoliosis. Spine J. 2015;15(6):1217–22.
Article
Google Scholar
Ho WK, Baccala M, Thom J, Eikelboom JW. High prevalence of abnormal preoperative coagulation tests in patients with adolescent idiopathic scoliosis. J Thromb Haemost. 2005;3(5):1094–5.
Article
CAS
Google Scholar
Bosch P, Kenkre TS, Londino JA, Cassara A, Yang C, Waters JH. Coagulation profile of patients with adolescent idiopathic scoliosis undergoing posterior spinal fusion. J Bone Joint Surg Am. 2016;98(20):e88.
Article
Google Scholar
Christiansen M, Jørgensen CS, Laursen I, Hirschberg D, Højrup P, Houen G. Protein chemical characterization of Gc globulin (vitamin D-binding protein) isoforms; Gc-1f, Gc-1s and Gc-2. Biochim Biophys Acta. 2007;1774(4):481–92.
Article
CAS
Google Scholar
Al-oanzi ZH, Tuck SP, Mastana SS, Summers GD, Cook DB, Francis RM, Datta HK. Vitamin D-binding protein gene microsatellite polymorphism influences BMD and risk of fractures in men. Osteoporos Int. 2008;19(7):951–60.
Article
CAS
Google Scholar
Wang Y, Cui ZQ, Luo TB, Liu L. Correlations of VDR and VDBP genetic polymorphisms with susceptibility to adolescent idiopathic scoliosis and efficacy of brace treatment. Genomics. 2016;108(5–6):194–200.
Article
CAS
Google Scholar
Goździalska A, Jaśkiewicz J, Knapik-Czajka M, Drąg J, Gawlik M, Cieśla M, Kulis A, Zarzycki D, Lipik E. Association of calcium and phosphate balance, vitamin D, PTH, and calcitonin in patients with adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2016;41(8):693–7.
Article
Google Scholar
Balioglu MB, Aydin C, Kargin D, Albayrak A, Atici Y, Tas SK, Kaygusuz MA. Vitamin-D measurement in patients with adolescent idiopathic scoliosis. J Pediatr Orthop B. 2017;26(1):48–52.
Article
Google Scholar
Bikle DD, Gee E. Free, and not total, 1,25-dihydroxyvitamin D regulates 25-hydroxyvitamin D metabolism by keratinocytes. Endocrinology. 1989;124(2):649–54.
Article
CAS
Google Scholar
Peris P, Filella X, Monegal A, Guañabens N, Foj L, Bonet M, Boquet D, Casado E, Cerdá D, Erra A, Gómez-Vaquero C, Martínez S, Montalá N, Pittarch C, Kanterewicz E, Sala M, Suris X, Carrasco JL, LabOscat Study Group. Comparison of total, free and bioavailable 25-OH vitamin D determinations to evaluate its biological activity in healthy adults: the LabOscat study. Osteoporos Int. 2017;28(8):2457–64.
Article
CAS
Google Scholar
Nagasawa H, Uto Y, Sasaki H, Okamura N, Murakami A, Kubo S, Kirk KL, Hori H. Gc protein (vitamin D-binding protein): Gc genotyping and GcMAF precursor activity. Anticancer Res. 2005;25(6A):3689–95.
CAS
PubMed
Google Scholar
Pollard SL, Lima JJ, Mougey E, Romero K, Tarazona-Meza C, Tomaino K, Guzmán GM, Hansel NN, Checkley W, Genetics of Asthma Susceptibility to Pollution (GASP) Study Investigators. Free 25(OH)D concentrations are associated with atopy and lung function in children with asthma. Ann Allergy Asthma Immunol. 2017;119(1):37–41.
Article
CAS
Google Scholar
Pelczyńska M, Grzelak T, Sperling M, Bogdański P, Pupek-Musialik D, Czyżewska K. Impact of 25-hydroxyvitamin D, free and bioavailable fractions of vitamin D, and vitamin D binding protein levels on metabolic syndrome components. Arch Med Sci. 2017;13(4):745–52.
Article
Google Scholar
Lonner BS, Toombs CS, Husain QM, Sponseller P, Shufflebarger H, Shah SA, Samdani AF, Betz RR, Cahill PJ, Yaszay B, Newton PO. Body mass index in adolescent spinal deformity: comparison of Scheuermann's kyphosis, adolescent idiopathic scoliosis, and Normal controls. Spine Deform. 2015;3(4):318–26.
Article
Google Scholar