Eckstein F, Cicuttini F, Raynauld J-P, Waterton JC, Peterfy C. Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): morphological assessment. Osteoarthr Cartil. 2006;14:46–75. https://doi.org/10.1016/J.JOCA.2006.02.026.
Article
Google Scholar
Amin S, LaValley M, Guermazi A, et al. The relationship between cartilage loss on magnetic resonance imaging and radiographic progression in men and women with knee osteoarthritis. Arthritis Rheum. 2005;52(10):3152–9. https://doi.org/10.1002/art.21296.
Article
PubMed
Google Scholar
Conaghan PG, Felson D, Gold G, Lohmander S, Totterman S, Altman R. MRI and non-cartilaginous structures in knee osteoarthritis. Osteoarthr Cartil. 2006;14:87–94. https://doi.org/10.1016/J.JOCA.2006.02.028.
Article
Google Scholar
Roemer FW, Guermazi A, Felson DT, et al. Presence of MRI-detected joint effusion and synovitis increases the risk of cartilage loss in knees without osteoarthritis at 30-month follow-up: the MOST study. Ann Rheum Dis. 2011. http://dx.doi.org/10.1136/ard.2011.150243. Accessed 10 Sept 2018.
Felson DT. Imaging abnormalities that correlate with joint pain. Br J Sports Med. 2011;45(4):289–91. https://doi.org/10.1136/bjsm.2010.081398.
Article
PubMed
Google Scholar
Terzidis IP, Christodoulou AG, Ploumis AL, Metsovitis SR, Koimtzis M, Givissis P. The appearance of kissing contusion in the acutely injured knee in the athletes. Br J Sports Med. 2004;38(5):592–6. https://doi.org/10.1136/bjsm.2003.006718.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nieminen MT, Rieppo J, Töyräs J, et al. T 2 relaxation reveals spatial collagen architecture in articular cartilage: a comparative quantitative MRI and polarized light microscopic study. Magn Reson Med. 2001;46(3):487–93. https://doi.org/10.1002/mrm.1218.
Article
CAS
PubMed
Google Scholar
Keenan KE, Besier TF, Pauly JM, et al. Prediction of glycosaminoglycan content in human cartilage by age, T1ρ and T2 MRI. Osteoarthr Cartil. 2011;19(2):171–9. https://doi.org/10.1016/J.JOCA.2010.11.009.
Article
CAS
PubMed
Google Scholar
Duvvuri U, Kudchodkar S, Reddy R, Leigh JS. T1ρ relaxation can assess longitudinal proteoglycan loss from articular cartilage in vitro. Osteoarthr Cartil. 2002;10(11):838–44. https://doi.org/10.1053/JOCA.2002.0826.
Article
CAS
PubMed
Google Scholar
van Tiel J, Kotek G, Reijman M, et al. Is T1ρ mapping an alternative to delayed gadolinium-enhanced MR imaging of cartilage in the assessment of Sulphated glycosaminoglycan content in human osteoarthritic knees? An in Vivo Validation Study. Radiology. 2016;279(2):523–31. https://doi.org/10.1148/radiol.2015150693.
Article
PubMed
Google Scholar
Mlynárik V, Trattnig S, Huber M, Zembsch A, Imhof H. The role of relaxation times in monitoring proteoglycan depletion in articular cartilage. J Magn Reson Imaging. 1999;10(4):497–502. https://doi.org/10.1002/(SICI)1522-2586(199910)10:4<497::AID-JMRI1>3.0.CO;2-T.
Article
PubMed
Google Scholar
Mlynárik V, Szomolányi P, Toffanin R, Vittur F, Trattnig S. Transverse relaxation mechanisms in articular cartilage. J Magn Reson. 2004;169(2):300–7. https://doi.org/10.1016/J.JMR.2004.05.003.
Article
PubMed
Google Scholar
Menezes N, Gray ML, Hartke JR, Deborah B. T2 and T1ρ MRI in articular cartilage systems. Magn Reson Med. 2004;51(3):503–9. https://doi.org/10.1002/mrm.10710.
Article
CAS
PubMed
Google Scholar
Taylor C, Carballido-Gamio J, Majumdar S, Li X. Comparison of quantitative imaging of cartilage for osteoarthritis: T2, T1ρ, dGEMRIC and contrast-enhanced computed tomography. Magn Reson Imaging. 2009;27(6):779–84. https://doi.org/10.1016/J.MRI.2009.01.016.
Article
PubMed
PubMed Central
Google Scholar
Liebl H, Joseph G, Nevitt MC, et al. Early T2 changes predict onset of radiographic knee osteoarthritis: data from the osteoarthritis initiative. Ann Rheum Dis. 2015;74(7):1353–LP-1359. http://dx.doi.org/10.1136/annrheumdis-2013-204157.
Article
Google Scholar
Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. In: Seminars in Musculoskeletal Radiology, vol. 8; 2004. p. 355–68.
Google Scholar
Link TM, Li X. Establishing compositional MRI of cartilage as a biomarker for clinical practice. Osteoarthr Cartil. 2018;26(9):1137–9. https://doi.org/10.1016/J.JOCA.2018.02.902.
Article
CAS
PubMed
Google Scholar
Baum T, Joseph GB, Karampinos DC, Jungmann PM, Link TM, Bauer JS. Cartilage and meniscal T2 relaxation time as non-invasive biomarker for knee osteoarthritis and cartilage repair procedures. Osteoarthr Cartil. 2013;21(10):1474–84. https://doi.org/10.1016/J.JOCA.2013.07.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prasad AP, Nardo L, Schooler J, Joseph GB, Link TM. T1ρ and T2 relaxation times predict progression of knee osteoarthritis. Osteoarthr Cartil. 2013;21(1):69–76. https://doi.org/10.1016/J.JOCA.2012.09.011.
Article
CAS
PubMed
Google Scholar
Li X, Kuo D, Theologis A, et al. Cartilage in anterior cruciate ligament–reconstructed knees: MR imaging T1 ρ and T2—initial experience with 1-year follow-up. Radiology. 2011;258(2):505–14. https://doi.org/10.1148/radiol.10101006.
Article
PubMed
PubMed Central
Google Scholar
Su F, Pedoia V, Teng H-L, et al. The association between MR T1ρ and T2 of cartilage and patient-reported outcomes after ACL injury and reconstruction. Osteoarthr Cartil. 2016;24(7):1180–9. https://doi.org/10.1016/j.joca.2016.01.985.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klocke NF, Amendola A, Thedens DR, Williams GN, Luty CM, Martin JA & Pedersen DR. Comparison of T1ρ , dGEMRIC, and quantitative T2 MRI in preoperative ACL rupture patients. Academic radiology. 2013;20(1):99–107. https://doi.org/10.1016/j.acra.2012.07.009.
Article
Google Scholar
Kai B, Mann SA, King C, Forster BB. Integrity of articular cartilage on T2 mapping associated with meniscal signal change. Eur J Radiol. 2011;79(3):421–7. https://doi.org/10.1016/J.EJRAD.2010.06.011.
Article
PubMed
Google Scholar
Matsubara H, Okazaki K, Takayama Y, et al. Detection of early cartilage deterioration associated with meniscal tear using T1ρ mapping magnetic resonance imaging. BMC Musculoskelet Disord. 2015;16(1):22. https://doi.org/10.1186/s12891-015-0487-4.
Article
PubMed
PubMed Central
Google Scholar
Jungmann PM, Kraus MS, Alizai H, et al. Association of Metabolic Risk Factors with Cartilage Degradation Assessed by T2 relaxation time at the knee: data from the osteoarthritis initiative. Arthritis Care Res (Hoboken). 2013;65(12):1942–50. https://doi.org/10.1002/acr.22093.
Article
CAS
PubMed
PubMed Central
Google Scholar
Serebrakian AT, Poulos T, Liebl H, et al. Weight loss over 48 months is associated with reduced progression of cartilage T2 relaxation time values: data from the osteoarthritis initiative. J Magn Reson Imaging. 2015;41(5):1272–80. https://doi.org/10.1002/jmri.24630.
Article
PubMed
Google Scholar
MacKay JW, Low SBL, Smith TO, Toms AP, McCaskie AW, Gilbert FJ. Systematic review and meta-analysis of the reliability and discriminative validity of cartilage compositional MRI in knee osteoarthritis. Osteoarthr Cartil. 2018. https://doi.org/10.1016/J.JOCA.2017.11.018.
Article
CAS
Google Scholar
Atkinson HF, Birmingham T, Moyer R, Kanko L, Yacoub D, Giffin J. T1rho and T2 relaxation of knee articular cartilage in patients with and at risk for knee osteoarthritis: a systematic review and meta-analysis. Osteoarthr Cartil. 2017;25:S236–7. https://doi.org/10.1016/j.joca.2017.02.403.
Article
Google Scholar
Bauer DC, Hunter DJ, Abramson SB, et al. Review classification of osteoarthritis biomarkers: a proposed approach. Osteoarthr Cartil. 2006;14(8):723–7. https://doi.org/10.1016/j.joca.2006.04.001.
Article
CAS
PubMed
Google Scholar
European Society of Radiology (ESR) ES of R. White paper on imaging biomarkers. Insights Imaging. 2010;1(2):42–5. https://doi.org/10.1007/s13244-010-0025-8.
Article
Google Scholar
Abramson RG, Burton KR, J-PJ Y, et al. Methods and challenges in quantitative imaging biomarker development. Acad Radiol. 2015;22(1):25–32. https://doi.org/10.1016/j.acra.2014.09.001.
Article
PubMed
PubMed Central
Google Scholar
Group F-NBW. BEST (Biomarkers, EndpointS, and Other Tools) Resource. Food and Drug Administration (US); 2016. https://www.ncbi.nlm.nih.gov/books/NBK326791/. Accessed 28 Aug 2018.
Hunter DJ, Nevitt M, Losina E, Kraus V. Biomarkers for osteoarthritis: current position and steps towards further validation. Best Pract Res Clin Rheumatol. 2014;28(1):61–71. https://doi.org/10.1016/j.berh.2014.01.007.
Article
PubMed
PubMed Central
Google Scholar
Roemer FW, Kijowski R, Guermazi A. Editorial: from theory to practice – the challenges of compositional MRI in osteoarthritis research. Osteoarthr Cartil. 2017;25(12):1923–5. https://doi.org/10.1016/J.JOCA.2017.08.007.
Article
CAS
PubMed
Google Scholar
Moher D, Liberati A, Tetzlaff J, Altman DG, Group TP. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097.
Article
PubMed
PubMed Central
Google Scholar
Nevitt MC, Felson DT, Lester G. OAI protocol the osteoarthritis initiative protocol for the cohort study. Osteoarthr Initiat. 2006:1–74 https://oai.epi-ucsf.org/datarelease/docs/StudyDesignProtocol.pdf. Accessed 18, July 2018.
Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16(4):494–502. http://dx.doi.org/10.1136/ard.16.4.494. Accessed 17 Dec 2018.
Article
CAS
Google Scholar
Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919. https://doi.org/10.1136/BMJ.I4919.
Article
PubMed
PubMed Central
Google Scholar
Cohen J. Statistical power analysis for the behavioral sciences second edition. https://doi.org/10.1016/C2013-0-10517-X.
Rothstein HR, Sutton AJ, Borenstein M. Publication Bias in Meta-analysis. 2005. https://doi.org/10.1002/0470870168.index.
Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication Bias in meta-analysis. Biometrics. 2000;56(2):455–63. https://doi.org/10.1111/j.0006-341X.2000.00455.x.
Article
CAS
PubMed
Google Scholar
Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60. https://doi.org/10.1136/bmj.327.7414.557.
Article
PubMed
PubMed Central
Google Scholar
van den Borne MPJ, Raijmakers NJH, Vanlauwe J, et al. International cartilage repair society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in autologous chondrocyte implantation (ACI) and microfracture. Osteoarthr Cartil. 2007;15(12):1397–402. https://doi.org/10.1016/J.JOCA.2007.05.005.
Article
PubMed
Google Scholar
Outerbridge RE. Etiology of chondromalacia patellae. J bone Jt Surg. 1961;43(4):752–7. https://doi.org/10.1302/0301-620X.43B4.752.
Article
CAS
Google Scholar
Baum T, Joseph GB, Arulanandan A, et al. Association of magnetic resonance imaging-based knee cartilage T2 measurements and focal knee lesions with knee pain: data from the osteoarthritis initiative. Arthritis Care Res (Hoboken). 2012;64(2):248–55. https://doi.org/10.1002/acr.20672.
Article
Google Scholar
Baum T, Joseph GB, Nardo L, et al. Correlation of magnetic resonance imaging-based knee cartilage T2 measurements and focal knee lesions with body mass index: thirty-six-month followup data from a longitudinal, observational multicenter study. Arthritis Care Res (Hoboken). 2013;65(1):23–33. https://doi.org/10.1002/acr.21741.
Article
PubMed
PubMed Central
Google Scholar
Baum T, Stehling C, Joseph GB, et al. Changes in knee cartilage T2 values over 24 months in subjects with and without risk factors for knee osteoarthritis and their association with focal knee lesions at baseline: data from the osteoarthritis initiative. J Magn Reson Imaging. 2012;35(2):370–8. https://doi.org/10.1002/jmri.22834.
Article
PubMed
Google Scholar
Bengtsson Moström E, Lammentausta E, Finnbogason T, Weidenhielm L, Janarv P-M, Tiderius CJ. Pre- and postcontrast T1 and T2 mapping of patellar cartilage in young adults with recurrent patellar dislocation. Magn Reson Med. 2015;74(5):1363–9. https://doi.org/10.1002/mrm.25511.
Article
CAS
PubMed
Google Scholar
Bining HJS, Santos R, Andrews G, Forster BB. Can T2 relaxation values and color maps be used to detect chondral damage utilizing subchondral bone marrow edema as a marker? Skelet Radiol. 2009;38(5):459–65. https://doi.org/10.1007/s00256-008-0629-y.
Article
Google Scholar
Bolbos RI, Ma CB, Link TM, Majumdar S, Li X. In vivo T1rho quantitative assessment of knee cartilage after anterior cruciate ligament injury using 3 tesla magnetic resonance imaging. Investig Radiol. 2008;43(11):782–8. https://doi.org/10.1097/RLI.0b013e318184a451.
Article
Google Scholar
Farrokhi S, Colletti PM, Powers CM. Differences in patellar cartilage thickness, transverse relaxation time, and deformational behavior. Am J Sports Med. 2011;39(2):384–91. https://doi.org/10.1177/0363546510381363.
Article
PubMed
Google Scholar
Gheno R, Yoon YC, Wang JH, Kim K, Baek S-Y. Changes in the T 2 relaxation value of the tibiofemoral articular cartilage about 6 months after anterior cruciate ligament reconstruction using the double-bundle technique. Br J Radiol. 2016;89(1060):20151002. https://doi.org/10.1259/bjr.20151002.
Article
PubMed
PubMed Central
Google Scholar
Van Ginckel A, Verdonk P, Victor J, Witvrouw E. Cartilage status in relation to return to sports after anterior cruciate ligament reconstruction. Am J Sports Med. 2013;41(3):550–9. https://doi.org/10.1177/0363546512473568.
Article
PubMed
Google Scholar
Gupta R, Virayavanich W, Kuo D, et al. MR T1ρ quantification of cartilage focal lesions in acutely injured knees: correlation with arthroscopic evaluation. Magn Reson Imaging. 2014;32(10):1290–6. https://doi.org/10.1016/J.MRI.2014.07.015.
Article
PubMed
PubMed Central
Google Scholar
Haughom B, Schairer W, Souza RB, Carpenter D, Ma CB, Li X. Abnormal tibiofemoral kinematics following ACL reconstruction are associated with early cartilage matrix degeneration measured by MRI T1rho. Knee. 2012;19(4):482–7. https://doi.org/10.1016/J.KNEE.2011.06.015.
Article
PubMed
Google Scholar
Hovis KK, Stehling C, Souza RB, et al. Physical activity is associated with magnetic resonance imaging-based knee cartilage T2 measurements in asymptomatic subjects with and those without osteoarthritis risk factors. Arthritis Rheum. 2011;63(8):2248–56. https://doi.org/10.1002/art.30419.
Article
PubMed
PubMed Central
Google Scholar
Joseph GB, Baum T, Carballido-Gamio J, et al. Texture analysis of cartilage T2 maps: individuals with risk factors for OA have higher and more heterogeneous knee cartilage MR T2 compared to normal controls - data from the osteoarthritis initiative. Arthritis Res Ther. 2011;13(5):R153. https://doi.org/10.1186/ar3469.
Article
PubMed
PubMed Central
Google Scholar
Kang CH, Kim HK, Shiraj S, Anton C, Kim DH, Horn PS. Patellofemoral instability in children: T2 relaxation times of the patellar cartilage in patients with and without patellofemoral instability and correlation with morphological grading of cartilage damage. Pediatr Radiol. 2016;46(8):1134–41. https://doi.org/10.1007/s00247-016-3574-2.
Article
PubMed
Google Scholar
Lansdown DA, Allen C, Zaid M, et al. A comprehensive in vivo kinematic, quantitative MRI and functional evaluation following ACL reconstruction — a comparison between mini-two incision and anteromedial portal femoral tunnel drilling. Knee. 2015;22(6):547–53. https://doi.org/10.1016/J.KNEE.2014.12.005.
Article
PubMed
Google Scholar
Lau BC, Thuillier DU, Pedoia V, et al. Inter- and intra-rater reliability of patellofemoral kinematic and contact area quantification by fast spin echo MRI and correlation with cartilage health by quantitative T1ρ MRI. Knee. 2016;23(1):13–9. https://doi.org/10.1016/J.KNEE.2015.08.017.
Article
PubMed
Google Scholar
Li H, Tao H, Hua Y, Chen J, Li Y, Chen S. Quantitative magnetic resonance imaging assessment of cartilage status: a comparison between young men with and without anterior cruciate ligament reconstruction. Arthrosc J Arthrosc Relat Surg. 2013;29(12):2012–9. https://doi.org/10.1016/J.ARTHRO.2013.09.075.
Article
Google Scholar
Okazaki K, Takayama Y, Osaki K, et al. Subclinical cartilage degeneration in young athletes with posterior cruciate ligament injuries detected with T1ρ magnetic resonance imaging mapping. Knee Surgery, Sport Traumatol Arthrosc. 2015;23(10):3094–100. https://doi.org/10.1007/s00167-014-3469-4.
Article
Google Scholar
Osaki K, Okazaki K, Takayama Y, et al. Characterization of biochemical cartilage change after anterior cruciate ligament injury using T1ρ mapping magnetic resonance imaging. Orthop J Sport Med. 2015;3(5):232596711558509. https://doi.org/10.1177/2325967115585092.
Article
Google Scholar
Palmieri-Smith RM, Wojtys EM, Potter HG. Early cartilage changes after anterior cruciate ligament injury: evaluation with imaging and serum biomarkers—a pilot study. Arthrosc J Arthrosc Relat Surg. 2016;32(7):1309–18. https://doi.org/10.1016/J.ARTHRO.2015.12.045.
Article
Google Scholar
Pedoia V, Li X, Su F, Calixto N, Majumdar S. Fully automatic analysis of the knee articular cartilage T 1ρ relaxation time using voxel-based relaxometry. J Magn Reson Imaging. 2016;43(4):970–80. https://doi.org/10.1002/jmri.25065.
Article
PubMed
Google Scholar
Pedoia V, Russell C, Randolph A, Li X, Majumdar S, AF-ACL Consortium A-A. Principal component analysis-T1ρ voxel based relaxometry of the articular cartilage: a comparison of biochemical patterns in osteoarthritis and anterior cruciate ligament subjects. Quant Imaging Med Surg. 2016;6(6):623–33. https://doi.org/10.21037/qims.2016.11.03.
Article
PubMed
PubMed Central
Google Scholar
Pedoia V, Su F, Amano K, et al. Analysis of the articular cartilage T 1ρ and T 2 relaxation times changes after ACL reconstruction in injured and contralateral knees and relationships with bone shape. J Orthop Res. 2017;35(3):707–17. https://doi.org/10.1002/jor.23398.
Article
PubMed
Google Scholar
Rehnitz C, Kupfer J, Streich NA, et al. Comparison of biochemical cartilage imaging techniques at 3 T MRI. Osteoarthr Cartil. 2014;22(10):1732–42. https://doi.org/10.1016/J.JOCA.2014.04.020.
Article
CAS
PubMed
Google Scholar
Russell C, Pedoia V, Souza RB, Majumdar S. Cross-sectional and longitudinal study of the impact of posterior meniscus horn lesions on adjacent cartilage composition, patient-reported outcomes and gait biomechanics in subjects without radiographic osteoarthritis. Osteoarthr Cartil. 2017;25(5):708–17. https://doi.org/10.1016/J.JOCA.2016.10.025.
Article
CAS
PubMed
Google Scholar
Sauerschnig M, Bauer JS, Kohn L, et al. Alignment does not influence cartilage T2 in asymptomatic knee joints. Knee Surgery, Sport Traumatol Arthrosc. 2014;22(6):1396–403. https://doi.org/10.1007/s00167-013-2756-9.
Article
CAS
Google Scholar
Snoj Ž, Zupanc O, Salapura V. Retrospective quantitative cartilage and semi-quantitative morphological evaluation at 6 years after ACL reconstruction. Arch Orthop Trauma Surg. 2016;136(7):967–74. https://doi.org/10.1007/s00402-016-2463-3.
Article
PubMed
Google Scholar
Subhawong TK, Thakkar RS, Padua A, Flammang A, Chhabra A, Carrino JA. Patellofemoral friction syndrome: magnetic resonance imaging correlation of morphologic and T2 cartilage imaging. J Comput Assist Tomogr. 2014;38(2):308–12. https://doi.org/10.1097/RCT.0b013e3182aab187.
Article
PubMed
PubMed Central
Google Scholar
Su F, Hilton JF, Nardo L, et al. Cartilage morphology and T1ρ and T2 quantification in ACL-reconstructed knees: a 2-year follow-up. Osteoarthr Cartil. 2013;21(8):1058–67. https://doi.org/10.1016/J.JOCA.2013.05.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Theologis AA, Haughom B, Liang F, et al. Comparison of T1rho relaxation times between ACL-reconstructed knees and contralateral uninjured knees. Knee Surgery, Sport Traumatol Arthrosc. 2014;22(2):298–307. https://doi.org/10.1007/s00167-013-2397-z.
Article
Google Scholar
Thuillier DU, Souza RB, Wu S, Luke A, Li X, Feeley BT. T 1ρ imaging demonstrates early changes in the lateral Patella in patients with patellofemoral pain and Maltracking. Am J Sports Med. 2013;41(8):1813–8. https://doi.org/10.1177/0363546513495167.
Article
PubMed
Google Scholar
Wirth W, Maschek S, Roemer FW, Eckstein F. Layer-specific femorotibial cartilage T2 relaxation time in knees with and without early knee osteoarthritis: data from the osteoarthritis initiative (OAI). Sci Rep. 2016;6:34202. https://doi.org/10.1038/srep34202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Witschey WRT, Borthakur A, Fenty M, et al. T1ρ MRI quantification of arthroscopically confirmed cartilage degeneration. Magn Reson Med. 2010;63(5):1376–82. https://doi.org/10.1002/mrm.22272.
Article
PubMed
PubMed Central
Google Scholar
Xu J, Xie G, Di Y, Bai M, Zhao X. Value of T2-mapping and DWI in the diagnosis of early knee cartilage injury. J Radiol Case Rep. 2011;5(2):13–8. https://doi.org/10.3941/jrcr.v5i2.515.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zaid M, Lansdown D, Su F, et al. Abnormal tibial position is correlated to early degenerative changes one year following ACL reconstruction. J Orthop Res. 2015;33(7):1079–86. https://doi.org/10.1002/jor.22867.
Article
PubMed
Google Scholar
Kim C-W, Hosseini A, Lin L, et al. Quantitative analysis of T2 relaxation times of the patellofemoral joint cartilage 3 years after anterior cruciate ligament reconstruction; 2018. https://doi.org/10.1016/j.jot.2017.06.002.
Book
Google Scholar
Kogan F, Fan AP, Monu U, Iagaru A, Hargreaves BA, Gold GE. Quantitative imaging of bone-cartilage interactions in ACL-injured patients with PET-MRI. Osteoarthr Cartil. 2018;26(6):790–6. https://doi.org/10.1016/j.joca.2018.04.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moström EB, Lammentausta E, Finnbogason T, Weidenhielm L, Janarv P-M, Tiderius CJ. T2 mapping and post-contrast T1 (dGEMRIC) of the patellar cartilage: 12-year follow-up after patellar stabilizing surgery in childhood. Acta Radiol Open. 2017;6(10):205846011773880. https://doi.org/10.1177/2058460117738808.
Article
Google Scholar
Pfeiffer S, Harkey MS, Stanley LE, et al. Associations between slower walking speed and T1ρ magnetic resonance imaging of femoral cartilage following anterior cruciate ligament reconstruction. Arthritis Care Res (Hoboken). 2018;70(8):1132–40. https://doi.org/10.1002/acr.23477.
Article
CAS
PubMed
Google Scholar
Pietrosimone B, Nissman D, Padua DA, et al. Associations between cartilage proteoglycan density and patient outcomes 12 months following anterior cruciate ligament reconstruction. Knee. 2017;25(1):118–29. https://doi.org/10.1016/j.knee.2017.10.005.
Article
Google Scholar
Amano K, Pedoia V, Su F, Souza RB, Li X, Ma CB. Persistent biomechanical alterations after ACL reconstruction are associated with early cartilage matrix changes detected by quantitative MR. Orthop J Sport Med. 2016;4(4):232596711664442. https://doi.org/10.1177/2325967116644421.
Article
Google Scholar
Tao H, Qiao Y, Hu Y, et al. Quantitative T2-mapping and T2*-mapping evaluation of changes in cartilage matrix after acute anterior cruciate ligament rupture and the correlation between the results of both methods. Biomed Res Int. 2018:1–8. https://doi.org/10.1155/2018/7985672.
Google Scholar
Teng H-L, Wu D, Su F, et al. Gait characteristics associated with a greater increase in medial knee cartilage T1rho and T2 relaxation times in patients undergoing anterior cruciate ligament reconstruction. Am J Med. 2017;45(14):3262–71. https://doi.org/10.1177/0363546517723007.
Article
Google Scholar
Wang X, Wrigley TV, Bennell KL, et al. Cartilage quantitative T2 relaxation time 2-4 years following isolated anterior cruciate ligament reconstruction. J Orthop Res. 2018;36(7):2022–9. https://doi.org/10.1002/jor.23846.
Article
CAS
PubMed
Google Scholar
Mosher TJ, Liu Y, Yang QX, et al. Age dependency of cartilage magnetic resonance imaging T2 relaxation times in asymptomatic women. Arthritis Rheum. 2004;50(9):2820–8. https://doi.org/10.1002/art.20473.
Article
PubMed
Google Scholar
Collins AT, Kulvaranon ML, Cutcliffe HC, et al. Obesity alters the in vivo mechanical response and biochemical properties of cartilage as measured by MRI. Arthritis Res Ther. 2018;20(1):232. https://doi.org/10.1186/s13075-018-1727-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
van der Heijden RA, Oei EHG, Bron EE, et al. No difference on quantitative magnetic resonance imaging in patellofemoral cartilage composition between patients with patellofemoral pain and healthy controls. Am J Sports Med. 2016;44(5):1172–8. https://doi.org/10.1177/0363546516632507.
Article
PubMed
Google Scholar
Apprich S, Welsch GH, Mamisch TC, et al. Detection of degenerative cartilage disease: comparison of high-resolution morphological MR and quantitative T2 mapping at 3.0 tesla. Osteoarthr Cartil. 2010;18(9):1211–7. https://doi.org/10.1016/J.JOCA.2010.06.002.
Article
CAS
PubMed
Google Scholar
Apprich S, Mamisch TC, Welsch GH, et al. Quantitative T2 mapping of the patella at 3.0 T is sensitive to early cartilage degeneration, but also to loading of the knee. Eur J Radiol. 2012;81(4):e438–43. https://doi.org/10.1016/J.EJRAD.2011.03.069.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klocke NF, Amendola A, Thedens DR, Williams GN, Luty CM, Martin JA & Pedersen DR. Comparison of T1ρ , dGEMRIC, and quantitative T2 MRI in preoperative ACL rupture patients. Academic Radiology. 2013;20(1):99-107. https://doi.org/10.1016/j.acra.2012.07.009.
Article
Google Scholar
Terrin N, Schmid CH, Lau J, Olkin I. Adjusting for publication bias in the presence of heterogeneity. Stat Med. 2003;22(13):2113–26. https://doi.org/10.1002/sim.1461.
Article
PubMed
Google Scholar
Welsch GH, Apprich S, Zbyn S, et al. Biochemical (T2, T2* and magnetisation transfer ratio) MRI of knee cartilage: feasibility at ultra-high field (7T) compared with high field (3T) strength. Eur Radiol. 2011;21(6):1136–43. https://doi.org/10.1007/s00330-010-2029-7.
Article
PubMed
Google Scholar
Balamoody S, Williams TG, Wolstenholme C, et al. Magnetic resonance transverse relaxation time T2 of knee cartilage in osteoarthritis at 3-T: a cross-sectional multicentre, multivendor reproducibility study. Skelet Radiol. 2013;42(4):511–20. https://doi.org/10.1007/s00256-012-1511-5.
Article
Google Scholar
Dardzinski BJ, Schneider E. Radiofrequency (RF) coil impacts the value and reproducibility of cartilage spin–spin (T2) relaxation time measurements. Osteoarthr Cartil. 2013;21(5):710–20. https://doi.org/10.1016/J.JOCA.2013.01.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matzat SJ, McWalter EJ, Kogan F, Chen W, Gold GE. T 2 relaxation time quantitation differs between pulse sequences in articular cartilage. J Magn Reson Imaging. 2015;42(1):105–13. https://doi.org/10.1002/jmri.24757.
Article
PubMed
Google Scholar
Pai A, Li X, Majumdar S. A comparative study at 3 T of sequence dependence of T2 quantitation in the knee. Magn Reson Imaging. 2008;26(9):1215–20. https://doi.org/10.1016/J.MRI.2008.02.017.
Article
PubMed
PubMed Central
Google Scholar
Lüsse S, Knauss R, Werner A, Gründer W, Arnold K. Action of compression and cations on the proton and deuterium relaxation in cartilage. Magn Reson Med. 1995;33(4):483–9. https://doi.org/10.1002/mrm.1910330405.
Article
PubMed
Google Scholar
Lüssea S, Claassen H, Gehrke T, et al. Evaluation of water content by spatially resolved transverse relaxation times of human articular cartilage. Magn Reson Imaging. 2000;18(4):423–30. https://doi.org/10.1016/S0730-725X(99)00144-7.
Article
Google Scholar
Crawley AP, Henkelman RM. Errors inT2 estimation using multislice multiple-echo imaging. Magn Reson Med. 1987;4(1):34–47. https://doi.org/10.1002/mrm.1910040105.
Article
CAS
PubMed
Google Scholar
Eckstein F, Heudorfer L, Faber SC, Burgkart R, Englmeier K-H, Reiser M. Long-term and resegmentation precision of quantitative cartilage MR imaging (qMRI). Osteoarthr Cartil. 2002;10(12):922–8. https://doi.org/10.1053/JOCA.2002.0844.
Article
CAS
PubMed
Google Scholar
Eckstein F, Ateshian G, Burgkart R, et al. Proposal for a nomenclature for magnetic resonance imaging based measures of articular cartilage in osteoarthritis. Osteoarthr Cartil. 2006;14(10):974–83. https://doi.org/10.1016/J.JOCA.2006.03.005.
Article
CAS
PubMed
Google Scholar
Li X, Pedoia V, Kumar D, et al. Cartilage T1ρ and T2 relaxation times: longitudinal reproducibility and variations using different coils, MR systems and sites. Osteoarthr Cartil. 2015;23(12):2214–23. https://doi.org/10.1016/J.JOCA.2015.07.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mosher TJ, Zhang Z, Reddy R, et al. Knee articular cartilage damage in osteoarthritis: analysis of MR image biomarker reproducibility in ACRIN-PA 4001 multicenter trial. Radiology. 2011;258(3):832–42. https://doi.org/10.1148/radiol.10101174.
Article
PubMed
PubMed Central
Google Scholar
Singh A, Haris M, Cai K, Kogan F, Hariharan H, Reddy R. High resolution T1ρ mapping of in vivo human knee cartilage at 7T. Zadpoor AA, ed. PLoS One. 2014;9(5):e97486. https://doi.org/10.1371/journal.pone.0097486.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li X, Han ET, Ma CB, Link TM, Newitt DC, Majumdar S. In vivo 3T spiral imaging based multi-slice T1ρ mapping of knee cartilage in osteoarthritis. Magn Reson Med. 2005;54(4):929–36. https://doi.org/10.1002/mrm.20609.
Article
PubMed
Google Scholar
Liess C, Lüsse S, Karger N, Heller M, Glüer C-C. Detection of changes in cartilage water content using MRI T2-mapping in vivo. Osteoarthr Cartil. 2002;10(12):907–13. https://doi.org/10.1053/JOCA.2002.0847.
Article
CAS
PubMed
Google Scholar
Liu F, Choi KW, Samsonov A, et al. Articular cartilage of the human knee joint: in vivo multicomponent T2 analysis at 3.0 T. Radiology. 2015;277(2):477–88. https://doi.org/10.1148/radiol.2015142201.
Article
PubMed
PubMed Central
Google Scholar
Carballido-Gamio J, Link TM, Majumdar S. New techniques for cartilage magnetic resonance imaging relaxation time analysis: texture analysis of flattened cartilage and localized intra- and inter-subject comparisons. Magn Reson Med. 2008;59(6):1472–7. https://doi.org/10.1002/mrm.21553.
Article
PubMed
PubMed Central
Google Scholar
Duryea J, Cheng C, Schaefer LF, Smith S, Madore B. Integration of accelerated MRI and post-processing software: a promising method for studies of knee osteoarthritis. Osteoarthr Cartil. 2016;24(11):1905–9. https://doi.org/10.1016/J.JOCA.2016.06.001.
Article
CAS
PubMed
Google Scholar
Hannila I, Susanna Räinä S, Tervonen O, Ojala R, Nieminen MT. Topographical variation of T2 relaxation time in the young adult knee cartilage at 1.5 T. Osteoarthr Cartil. 2009;17(12):1570–5. https://doi.org/10.1016/J.JOCA.2009.05.011.
Article
CAS
PubMed
Google Scholar
Jordan CD, McWalter EJ, Monu UD, et al. Variability of CubeQuant T1ρ, quantitative DESS T2, and cones sodium MRI in knee cartilage. Osteoarthr Cartil. 2014;22(10):1559–67. https://doi.org/10.1016/J.JOCA.2014.06.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li X, Wyatt C, Rivoire J, et al. Simultaneous acquisition of T 1ρ and T 2 quantification in knee cartilage: repeatability and diurnal variation. J Magn Reson Imaging. 2014;39(5):1287–93. https://doi.org/10.1002/jmri.24253.
Article
PubMed
Google Scholar
Buckler AJ, Bresolin L, Dunnick NR, Sullivan DC. Group F the. A collaborative Enterprise for Multi-Stakeholder Participation in the advancement of quantitative imaging. Radiology. 2011;258(3):906–14. https://doi.org/10.1148/radiol.10100799.
Article
PubMed
Google Scholar
Peterfy CG, Schneider E, Nevitt M. The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthr Cartil. 2008;16(12):1433–41. https://doi.org/10.1016/j.joca.2008.06.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keenan KE, Ainslie M, Barker AJ, et al. Quantitative magnetic resonance imaging phantoms: a review and the need for a system phantom. Magn Reson Med. 2018;79(1):48–61. https://doi.org/10.1002/mrm.26982.
Article
PubMed
Google Scholar
Xia Y, Moody JB, Burton-Wurster N, Lust G. Quantitative in situ correlation between microscopic MRI and polarized light microscopy studies of articular cartilage. Osteoarthr Cartil. 2001;9(5):393–406. https://doi.org/10.1053/JOCA.2000.0405.
Article
CAS
PubMed
Google Scholar