Hindocha S, McGrouther DA, Bayat A. Epidemiological evaluation of Dupuytren’s disease incidence and prevalence rates in relation to etiology. Hand (NY). 2009;4:256–69.
Article
Google Scholar
Lanting R, van den Heuvel ER, Westerink B, Werker PM. Prevalence of Dupuytren disease in the Netherlands. Plast Reconstr Surg. 2013;132:394–403.
Article
CAS
Google Scholar
Larsen S, Krogsgaard DG, Aagaard Larsen L, Iachina M, Skytthe A, Frederiksen H. Genetic and environmental influences in Dupuytren’s disease: a study of 30,330 Danish twin pairs. J Hand Surg Eur. 2015;40:171–6.
Article
CAS
Google Scholar
Hart MG, Hooper G. Clinical associations of Dupuytren’s disease. Postgrad Med J. 2005;81(957):425–8.
Article
CAS
Google Scholar
Rayan GM. Dupuytren disease: anatomy, pathology, presentation, and treatment. J Bone Joint Surg Am. 2007;89:189–98.
Article
Google Scholar
Zhou C, Hovius SER, Pieters AJ, Slijper HP, Feitz R, Selles RW. Comparative effectiveness of needle Aponeurotomy and collagenase injection for Dupuytren's contracture: a multicenter study. Plast Reconstr Surg Glob Open. 2017;5(9):e1425.
Article
Google Scholar
Hurst LC, Badalamente MA, Hentz VR, Hotchkiss RN, Kaplan FT, Meals RA, Smith TM, Rodzvilla J. CORD I Study group injectable collagenase clostridium histolyticum for Dupuytren’s contracture. N Engl J Med 2009; 361:968–979.
van Rijssen AL, ter Linden H, Werker PM. Five-year results of a randomized clinical trial on treatment in Dupuytren’s disease: percutaneous needle fasciotomy versus limited fasciectomy. Plast Reconstr Surg. 2012;129:469–77.
Article
Google Scholar
Chen NC, Srinivasan RC, Shauver MJ, Chung KC. A systematic review of outcomes of fasciotomy, aponeurotomy, and collagenase treatments for Dupuytren’s contracture. Hand (N Y). 2011;6:250–5.
Article
Google Scholar
Tomasek J, Rayan GM. Correlation of alpha-smooth muscle actin expression and contraction in Dupuytren’s disease fibroblasts. J Hand Surg Am. 1995;20:450–5.
Article
CAS
Google Scholar
Rayan GM, Parizi M, Tomasek JJ. Pharmacologic regulation of Dupuytren’s fibroblast contraction in vitro. J Hand Surg Am. 1996;21:1065–70.
Article
CAS
Google Scholar
Badalamente MA, Hurst LC. The biochemistry of Dupuytren’s disease. Hand Clin. 1999;15(1):35–42 v-vi.
CAS
PubMed
Google Scholar
Zhang AY, Kargel JS. The basic science of Dupuytren disease. Hand Clin. 2018;34(3):301–5.
Article
Google Scholar
Krause C, Kloen P, Ten Dijke P. Elevated transforming growth factor b and mitogen-activated protein kinase pathways mediate fibrotic traits of Dupuytren’s disease fibroblasts. Fibrogenesis Tissue Repair. 2011;4:14.
Article
CAS
Google Scholar
Ratajczak-Wielgomas K, Gosk J, Rabczyński J, Augoff K, Podhorska-Okołów M, Gamian A, Rutowski R. Expression of MMP-2, TIMP-2, TGF-β1, and decorin in Dupuytren’s contracture. Connect Tissue Res. 2012;53(6):469–77.
Article
CAS
Google Scholar
Satish L, Gallo PH, Baratz ME, Johnson S, Kathju S. Reversal of TGF-β1 stimulation of α-smooth muscle actin and extracellular matrix components by cyclic AMP in Dupuytren's-derived fibroblasts. BMC Musculoskelet Disord. 2011;12:113.
Article
CAS
Google Scholar
Vaughan MB, Howard EW, Tomasek JJ. Transforming growth factor-beta1 promoted the morphological and functional differentiation of the myofibroblast. Exp Cell Res. 2000;257(1):180–9.
Article
CAS
Google Scholar
Hinz B. Formation and function of the myofibroblast during tissue repair. J Invest Dermatol. 2007;127(3):526–37.
Article
CAS
Google Scholar
Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002;3:349–63.
Article
CAS
Google Scholar
Bisson MA, Beckett KS, McGrouther DA, Grobbelaar AO, Mudera V. Transforming growth factor-beta1 stimulation enhances Dupuytren’s fibroblast contraction in response to unizxial mechanical load within a 3-dimensional collagen gel. J Hand Surg Am. 2009;34(6):1102–10.
Article
Google Scholar
Zhou C, Liu F, Gallo PH, Baratz ME, Kathju S, Satish L. Anti-fibrotic action of pirfenidone in Dupuytren's disease-derived fibroblasts. BMC Musculoskelet Disord 2016; 17(1):469.
Bisson MA, McGrouther DA, Mudera V, Grobbelaar AO. The different characteristics of Dupuytren’s disease fibroblast derived from either nodule or cord: expression of alpha-smooth muscle actin and the response to stimulation by TGF-beta1. J Hand Surg Br. 2003;28(4):351–6.
Article
CAS
Google Scholar
Feng XH, Derynck R. Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol. 2005;21:659–93.
Article
CAS
Google Scholar
Zhang YE. Non-Smad pathways in TGF-β signaling. Cell Res. 2009;19:128–39.
Article
CAS
Google Scholar
Lyseng-Williamson KA. Pirfenidone tablets in idiopathic pulmonary fibrosis: a profile of their use. Drugs Ther Perspect. 2018;34(1):8–15.
Article
Google Scholar
Cordova A, Tripoli M, Corradino B, Napoli N, Moschella M. Dupuytren’s contracture: an update review of biomolecular aspects and therapeutic perspectives. J Hand Surg (Br). 2005;30(6):557–62.
Article
CAS
Google Scholar
Brickley-Parsons D, Glimcher MJ, Smith RJ, Albin R, Adams JP. Biochemical changes in the collagen of the palmar fascia in patients with Dupuytren’s disease. J Bone Joint Surg Am. 1981;63(5):787–97.
Article
CAS
Google Scholar
Hanyu T, Tajima T, Takagi T, Sasaki S, Fujimoto D, Isemura M, Yosizawa Z. Biochemical studies on the collagen of the palmar aponeurosis affected with Dupuytren’s disease. Tohuku J Exp Med. 1984;142(4):437–43.
Article
CAS
Google Scholar
Lam WL, Rawlins JM, Karoo ROS, Naylor I, Sharpe DT. Re-visiting Luck’s classification: a histological analysis of Dupuytren’s disease. J Hand Surg Eur Vol. 2010;35(4):312–7.
Article
CAS
Google Scholar
Weiskirchen R, Weiskirchen S, Tacke F. Organ and tissue fibrosis: Molecular signals, cellular mechanisms and translational implications. Mol Aspects Med. 2018;S0098–2997(18):30038–40.
Google Scholar
Macias-Barragan J, Sandoval-Rodriguez A, Navarro-Partida J, Armendariz-Borunda J. The multifaceted role of pirfenidone and its novel targets. Fibrogenesis Tissue Repair. 2010;3:1. https://doi.org/10.1186/1755-1536-3-1.
Article
CAS
Google Scholar
Molina-Molina M, Machahua-Huamani C, Vicens-Zygmunt V, Llatjós R, Escobar I, Sala-Llinas E, Luburich-Hernaiz P, Dorca J, Montes-Worboys A. Anti-fibrotic effects of pirfenidone and rapamycin in primary IPF fibroblasts and human alveolar epithelial cells. BMC Pulm Med. 2018;18(1):63.
Article
CAS
Google Scholar
Stahnke T, Kowtharapu BS, Stachs O, Schmitz KP, Wurm J, Wree A, Guthoff RF, Hovakimyan M. Suppression of TGF-β pathway by pirfenidone decreases extracellular matrix deposition in ocular fibroblasts in vitro. PLoS One. 2017;12(2):e0172592.
Article
Google Scholar
Sun Y, Zhang Y, Chi P. Pirfenidone suppresses TGF-β1-induced human intestinal fibroblasts activities by regulating proliferation and apoptosis via the inhibition of the Smad and PI3K/AKT signaling pathway. Mol Med Rep. 2018;18(4):3907–13.
CAS
PubMed
PubMed Central
Google Scholar
Hall CL, Wells AR, Leung KP. Pirfenidone reduces profibrotic responses in human dermal myofibroblasts, in vitro. Lab Investig. 2018;98(5):640–55.
Article
CAS
Google Scholar
Mebratu Y, Tesfaigzi Y. How ERK1/2 activation controls cell proliferation and cell death: is subcellular localization the answer? Cell Cycle. 2009;8(8):1168–75.
Article
CAS
Google Scholar
Roux PP, Blenis J ERK and p38 MAPK-activated protein kinases: A family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 2004 68 (2):320–344.
New D, Wu K, Kwok AW. Wong YH. G protein-coupled receptor-induced Akt activity in cellular proliferation and apoptosis FEBS J. 2007;274(23):6025–36 Epub 2007 Oct 19.
CAS
Google Scholar
Meyer-Ter-Vehn T, Gebhardt S, Sebald W, Buttmann M, grehn F, Schlunck G, Knaus P. p38 inhibitors prevent TGF-beta-induced myofibroblast transdifferentiation in human tenon fibroblasts. Invest Opthalmol Vis Sci 2006; 47:1500–1509.
Bujor AM, Pannu J, Bu S, Smith EA, Muise-Helmericks RC, Trojanowska M. Akt blockade downregulates collagen and upregulates MMP1 in human dermal fibroblasts. H Invest Dermatol. 2008;128:1906–14.
Article
CAS
Google Scholar
Ratkaj I, Bujak M, Jurišić D, Baus Lončar M, Bendelja K, Pavelić K, Kraljević PS. Microarray analysis of Dupuytren's disease cells: the profibrogenic role of the TGF-β inducible p38 MAPK pathway. Cell Physiol Biochem. 2012;30(4):927–42.
Article
CAS
Google Scholar
Fukata Y, Amano M, Kaibuchi K. Rho-rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol Sci. 2001;22:32–9.
Article
CAS
Google Scholar