Design, setting and participants
Radboudumc is one of the eight University Medical Centers in the Netherlands. The Orthopedic Department established a clinical registry in 1993 for the routine collection of health outcomes prior to and after total hip and knee replacement. Patients indicated for surgery were routinely referred to a clinical scoring station for measurements pre- and post-surgery follow up. The data was collected and stored in a local database at the hospital. This observational study presents data of consecutive patients that received total hip and knee replacement between October 1993 and February 2014.
Patient-reported health outcomes
Health outcomes in total hip replacement were measured with the Harris Hip Score (HHS), the Oxford Hip Score (OHS), a visual analog scale (VAS) for pain in rest, and a VAS for pain during exercise. The HHS contains eight items for pain, function, walking aids, walking, stair walking, shoe lacing, sitting, and public transportation. The total score is 0 points if a patient has major problems on all items and 100 points if a patient has no problems at all [16]. The OHS contains 12 items related to pain, physical functioning and (social) activities [16]. We used the adapted scoring system of Murray where 48 points is the best score and 0 points is the worst score [17].
Health outcomes in total knee replacement were measured with the Western Ontario and McMaster Universities Arthritis Index (WOMAC), the Knee Society Score (KSS), and a visual analog scale (VAS) for pain. The WOMAC is a questionnaire containing 24 items in three domains: pain, joint stiffness, physical functioning. The total score is 96 points if a patient has major problems on all items [18, 19]. The KSS was developed to rate both the knee prosthesis function and patients’ functional abilities after total knee replacement. The functional abilities score is related to walking, walking stairs, and walking aids with a maximum score of 100 points if patients experience no problems in their functioning [20]. The KSS was revised in 2011 expanding the score to five components [21]. In our study we used the original scoring system for functional ability.
The VAS score is a continuous scale comprised of a line, 100 mm in length, anchored by two descriptors, one for each symptom extreme. A score of 0 represents “no pain” and a score of 100 represents “worst imaginable pain” [22].
Measurements
At the Orthopedic Department of Radboudumc, measurements were routinely conducted at the clinical scoring station under supervision of a medical intern. Data were collected directly following the indication for surgery and during routine visits at 3, 6 and 12 months post-surgery. In addition, data on observed complications during and following surgery were collected.
Data analysis
We used descriptive analysis to obtain insight in patient characteristics and complications. We used a well-defined classification system for determining complications frequently used in the Netherlands [23]. In this complication system both surgery related orthopedic complication (e.g. infection, luxation, fracture) are registered as well as other medical complications (e.g. cardiac, psychiatric). Complications were registered up to 1 year after surgery.
Measurements were categorized as follows: pre-surgery (between 6 months pre-surgery and date of surgery); 3-months (between 1.5 and 4.5 months post-surgery); 6 months (between 4.5 and 9 months post-surgery); and 12 months (between 9 and 15 months post-surgery).
Paired t-tests were used to compare outcomes preoperatively and after 12-months follow-up. In addition, we estimated minimal clinically important differences (MCID). The MCID is defined as the minimal change on a score that is important to the patient, and is used as parameter to enable clinical interpretation of change scores. We used two methods for calculating the proportion of patients who reached the threshold for a MCID. First, we assigned a dichotomous score for a clinically important improvement per outcome, based on an absolute MCID cut off point [24, 25]. Second, we calculated a dichotomous score per outcome based on 30% improvement from baseline [26–28] To avoid ceiling effects we only included patients with potential improvement based on the absolute and relative cut-off points. Minimally clinically important differences between baseline and follow-up scores were calculated at T = 6 months (scores at 6 months post-operative compared with pre-operative scores), and at T = 12 months (scores at 12 months post-operative compared with pre-operative scores).
We estimated MCID after total hip replacement based on HHS, OHS, and VAS outcomes. HHS scores have been categorized as follows: >90 excellent; 80–89 good; 79–79 fair, and <70 poor [16, 29]. We categorized OHS scores of > 41 as excellent, 34–41 good, 27–33 fair, and <27 poor [5, 17, 30, 31]. Based on consensus we used an improvement of at least one category as MCID for the HHS and OHS.
We estimated MCID after total knee replacement based on WOMAC, KSS, and VAS outcomes. The MCID for the WOMAC has been estimated at around 15–20 points [18], with relative improvements of 21–41% for its subscales [32–34]. We used a MCID of 20 points based on consensus in the project team. KSS scores have been categorized as excellent (>80 points), good (70–79 points), moderate (60–69 points) and poor (<60 points) [35, 36]. Based on consensus we used an improvement of at least one category as MCID for the KSS. For VAS pain a MCID of 20 mm was used [34].
We used generalized estimating equation (GEE) analysis for estimating the mean outcomes. A main asset of GEE analysis is that it uses all observations within one subject, thus reducing potential bias due to missing data [37]. GEE analysis is based on repeated measurement within subjects, allowing for modeling the within-subject residuals to correct for patient (gender, age) and surgical (complications) characteristics as confounding variables. We included baseline scores in the model by using all observations within one subject in the GEE analysis. We used registered complications during and post-surgery and dichotomized them for each patient: 0 complications versus ≥1 complication.
To analyze trends over time we used 5-year timeframes: 1993–1999; 2000–2004; 2005–2010; 2011–2014 - with 2011–2014 as reference - and included these as independent variables in the full GEE-models. This resulted in 24 comparisons for primary hip replacement and revisions; and nine comparisons for total knee replacement.