Bitton R. The economic burden of osteoarthritis. Am J Manag Care. 2009;15(8):230–5.
Google Scholar
Fransen M, Bridgett L, March L, et al. The epidemiology of osteoarthritis in Asia. Int J Rheum Dis. 2011;14(2):113–21.
PubMed
Google Scholar
Brooks PM. Impact of osteoarthritis on individuals and society: how much disability? Social consequences and health economic implications. Curr Opin Rheumatol. 2002;14(5):573–7.
PubMed
Google Scholar
Peat G, McCarney R, et al. Knee pain and osteoarthritis in older adults: a review of community burden and current use of primary health care. Ann Rheum Dis. 2001;60(2):91–7.
CAS
PubMed
PubMed Central
Google Scholar
Gupta S, Hawker GA, et al. The economic burden of disabling hip and knee osteoarthritis (OA) from the perspective of individuals living with this condition. Rheumatology. 2005;44(12):1531–7.
CAS
PubMed
Google Scholar
Issa S, Sharma L. Epidemiology of osteoarthritis: an update. Curr Rheum Rep. 2006;8(1):7–15.
Google Scholar
Zhou Q, Yang W, Chen J, et al. Metabolic syndrome meets osteoarthritis. Nat Rev Rheumatol. 2012;8:729–37.
Google Scholar
Bagga H, Burkhardt D, et al. Long-term effects of intra-articular hyaluronan on synovial fluid in osteoarthritis of the knee. J Rheumatol. 2006;33(5):946–50.
CAS
PubMed
Google Scholar
Abraham NS, El-Serag HB, et al. Cyclooxygenase-2 selectivity of non-steroidal anti-inflammatory drugs and the risk of myocardial infarction and cerebrovascular accident. Aliment Pharmacol Ther. 2007;25(8):913–24.
CAS
PubMed
Google Scholar
Baltzer AW, Moser C, et al. Autologous conditioned serum (Orthokine) is an effective treatment for knee osteoarthritis. Osteoarthritis Cartilage. 2009;17(2):152–60.
CAS
PubMed
Google Scholar
Cram P, Lu X, et al. Total knee arthroplasty volume, utilization, and outcomes among Medicare beneficiaries, 1991-2010. JAMA. 2012;308(12):1227–36.
CAS
PubMed
PubMed Central
Google Scholar
Knutson K, Robertsson O. Swedish Knee Arthroplasty Registry. Acta Orthop. 2010;81(1):5–7.
PubMed
PubMed Central
Google Scholar
Carr A, Robertsson O, et al. Knee replacement. Lancet. 2012;379:1331–40.
PubMed
Google Scholar
Kurtz S, Ong K, et al. Projections of primary and revision hip and knee arthroplasty in the united sates from 2005 to 2030. J Bone Joint Surg Am. 2007;89(4):780–5.
PubMed
Google Scholar
Singh JA, Kundukulam J, et al. Early postoperative mortality following joint arthroplasty: a systematic review. J Rheumatol. 2011;38:1507–13.
PubMed
PubMed Central
Google Scholar
Wylde V, Hewlett S, et al. Persistent pain after joint replacement: prevalence, sensory qualities, and postoperative determinants. Pain. 2011;152:566–72.
PubMed
Google Scholar
Bourne RB, Chesworth BM, et al. Patient satisfaction after total knee arthroplasty: who is satisfied and who is not? Clin Orthop Relat. 2010;468:57–63.
Google Scholar
SooHoo N, Lieberman J, et al. Factors predicting complication rates following total knee replacement. J Bone Joint Surg Am. 2006;88(3):480–5.
PubMed
Google Scholar
Buckwalter JA, Mankin HJ. Articular cartilage. Part II: degeneration and osteoarthritis, repair, regeneration and transplantation. J Bone Joint Surg. 1997;79:612–32.
Google Scholar
Farnworth L. Osteochondral defects of the knee. Orthopedics. 2000;23(2):146–57.
CAS
PubMed
Google Scholar
Burr DB. Subchondral bone. In: Brandt KD, Lomander S, Doherty M (eds). Osteoarthritis. Oxford: Oxford University Press; 1998. p. 144–56.
Felson DT, Zhang Y. An update on the epidemiology of knee and hip osteoarthritis with a view to prevention. Arthritis Rheum. 1998;41:1343–55.
CAS
PubMed
Google Scholar
Wells T, Davidson C, et al. Age-related changes in the composition, the molecular stoichiometry and the stability of proteoglycan aggregates extracted from human articular cartilage. Biochem J. 2003;370:69–79.
CAS
PubMed
PubMed Central
Google Scholar
Chen AC, Temple MM, Ng DM, TeKoppele JM, et al. Induction of advanced glycation end products and alterations of the tensile properties of articular cartilage. Arthritis Rheum. 2002;46:3212–7.
CAS
PubMed
Google Scholar
Loeser R. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteo Cart. 2009;17:971–9.
CAS
Google Scholar
Mitchell PG, Magna HA, Reeves LM, et al. Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J Clin Invest. 1996;97:761–8.
CAS
PubMed
PubMed Central
Google Scholar
Goldring MB. Osteoarthritis and cartilage: the role of cytokines. Curr Rheumatol Rep. 2000;2(6):459–65.
CAS
PubMed
Google Scholar
Sandell LJ, Aigner T. Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res. 2001;3:107–13.
CAS
PubMed
PubMed Central
Google Scholar
Billinghurst RC, Dahlberg L, Ionescu M, et al. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest. 1997;99:1534–45.
CAS
PubMed
PubMed Central
Google Scholar
Ohta S, Imai K, Yamashita K, et al. Expression of matrix metalloproteinase 7 (matrilysin) in human osteoarthritic cartilage. Lab Invest. 1998;78:79–87.
CAS
PubMed
Google Scholar
Amin A, Abramson S. The role of nitric oxide in articular cartilage breakdown in osteoarthritis. Curr Opin Rheumatol. 1998;10:263–8.
CAS
PubMed
Google Scholar
Hashimoto S, Ochs RL, Rosen F, et al. Chondrocyte-derived apoptotic bodies and calcification of articular cartilage. Proc Natl Acad Sci U S A. 1998;95:3094–9.
CAS
PubMed
PubMed Central
Google Scholar
Lippiello L, Hall D, Mankin HJ. Collagen synthesis in normal and osteoarthritic cartilage. J Clin Invest. 1977;59:593–600.
CAS
PubMed
PubMed Central
Google Scholar
Eyre D, McDevitt CA, Billingham MEJ, et al. Biosynthesis of collagen and other matrix proteins by articular cartilage in experimental osteoarthritis. Biochem J. 1980;188:823–37.
CAS
PubMed
PubMed Central
Google Scholar
Collins D, McElligott T. Sulphate (35SO4) uptake by chondrocytes in relation to histological changes in osteoarthritic human articular cartilage. Ann Rheum Dis. 1960;19:318–30.
CAS
PubMed
PubMed Central
Google Scholar
McDevitt CA, Muir H. Biochemical changes in the cartilage of the knee in experimental and natural osteoarthritis in the dog. J Bone Joint Surg Brit. 1976;58:94–101.
CAS
PubMed
Google Scholar
Mankin HJ, Johnson ME, Lippiello L. Biochemical and metabolic abnormalities in articular cartilage from osteoarthritic human hips. III. Distribution and metabolism of amino sugar-containing macromolecules. J Bone Joint Surg Am. 1981;63(1):31–139.
Google Scholar
Mitrovic D, Gruson M, Demignon J, et al. Metabolism of human femoral head cartilage in osteoarthrosis and subcapital fracture. Ann Rheum Dis. 1981;40:18–26.
CAS
PubMed
PubMed Central
Google Scholar
Ryu J, Treadwell BV, Mankin HJ. Biochemical and metabolic abnormalities in normal and osteoarthritic human articular cartilage. Arthritis Rheum. 1984;27:49–57.
CAS
PubMed
Google Scholar
Aigner T, Dudhia J. Phenotypic modulation of chondrocytes as a potential therapeutic target in osteoarthritis: a hypothesis. Ann Rheum Dis. 1997;56:287–91.
CAS
PubMed
PubMed Central
Google Scholar
Girkontaite I, Frischholz S, Lammi P, et al. Immunolocalization of type X collagen in normal fetal and adult osteoarthritic cartilage with monoclonal antibodies. Matrix Biol. 1996;15:231–8.
CAS
PubMed
Google Scholar
Barry FP. Mesenchymal stem cell therapy in joint disease. Nov Found Symp. 2003;249:86–9.
Google Scholar
Im GI, Shin YW, Lee KB. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthritis Cartilage. 2005;13:845–53.
PubMed
Google Scholar
Fahy N, de Vreis-van Melle ML, Lehmann J, et al. Human osteoarthritis synovium impact chondrogenic differentiation of mesencymal stem cells via macrophage polarization state. Osteoarthritis Cartilage. 2014;22(8):1167–75.
CAS
PubMed
Google Scholar
Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol. 2010;6(11):625–35.
CAS
PubMed
Google Scholar
Murphy JM, Dixon K, Beck S, et al. Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis Rheum. 2002;46:704–13.
PubMed
Google Scholar
Barry F, Murphy M. Mesenchymal stem cells in joint disease and repair. Nat Rev Rheumatol. 2013;9:584–94.
CAS
PubMed
Google Scholar
Barry FP. Biology and clinical applications of mesenchymal stem cells. Birth Defects Res C Embryo Today. 2003;69:250–6.
CAS
PubMed
Google Scholar
Abramson SB, Attur M. Developments in the scientific understanding of osteoarthritis. Arhtritis Res Ther. 2009;11(3):227.
Google Scholar
Pelletier JP, Martel-Pelletier J, Abramson SB. Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets. Arthritis Rheum. 2001;44:1237–47.
CAS
PubMed
Google Scholar
Vaananen HK. Mesenchymal stem cells. Ann Med. 2005;37(7):469–79.
PubMed
Google Scholar
Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004;36(4):568–84.
CAS
PubMed
Google Scholar
Arinzeh TL. Mesenchymal stem cells for bone repair: preclinical studies and potential orthopaedic applications. Foot Ankle Clin. 2005;10(4):651–65.
PubMed
Google Scholar
Noel D, Djouad F, Jorgense C. Regenerative medicine through mesenchymal stem cells for bone and cartilage repair. Curr Opin Investig Drugs. 2002;3(7):1000–4.
PubMed
Google Scholar
Zhou S, Eid K, Glowacki J. Cooperation between TGF-beta and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells. J Bone Miner. 2004;19:463–70.
CAS
Google Scholar
Longobardi L, O'Rear L, Aakula S, et al. Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J Bone Miner. 2006;21:626–36.
CAS
Google Scholar
Bosnakovski D, Mizuno M, Kim G, et al. Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell Tissue Res. 2005;319:243–53.
PubMed
Google Scholar
Knippenberg M, Helder MN, Zandieh Doulabi B, et al. Osteogenesis versus chondrogenesis by BMP-2 and BMP-7 in adipose stem cells. Biochem Biophys Res. 2006;342:902–8.
CAS
Google Scholar
Solchaga LA, Temenoff JS, Gao J, et al. Repair of osteochondral defects with hyaluronan- and polyester-based scaffolds. Osteoarthritis Cartilage. 2005;13:297–309.
PubMed
Google Scholar
Caplan A. What are MSCs therapeutic? New data: new insight. J Pathol. 2009;217:318–24.
CAS
PubMed
Google Scholar
Djouad F, Bouffi C, Ghannam S, et al. Mesenchymal stem cell: innovative therapeutic tools for rheumatic diseases. Nat Rev Rheumatol. 2009;5:392–9.
CAS
PubMed
Google Scholar
Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell. 2011;9(1):11–5.
CAS
PubMed
PubMed Central
Google Scholar
Nakagami H, Morishita R, et al. Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J Atheroscler Thromb. 2006;13(2):77.
PubMed
Google Scholar
Caplan AI. Mesenchymal stem cells. J Orth Res. 1991;9(5):641–50.
CAS
Google Scholar
Wu L, Leijten JC, Georgi N, et al. Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Eng. 2011;17(9-10):1425–36.
CAS
Google Scholar
de Windt T, Saris DB, Slaper-Cortenbach IC, et al. Direct cell–cell contact with chondrocytes is a key mechanism in multipotent mesenchymal stromal cell-mediated chondrogenesis. Tissue Eng Part A. 2015;21(19-20):2536–47.
PubMed
Google Scholar
Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007;213:341–7.
CAS
PubMed
Google Scholar
Diekman B et al. Chondrogenesis of adult stem cells from adipose tissue and bone marrow: induction by growth factors and cartilage matrix. Tissue Eng. 2010;16(2):523–33.
CAS
Google Scholar
Kern S, Eichler JS, Kluter H, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294–301.
CAS
PubMed
Google Scholar
Lo Surdo J, Bauer SR. Quantitative approaches to detect done and passage differences in adipogenic potential and clonogenicity in human bone marrow derived mesenchymal stem cells. Tissue Eng. 2012;18(11):1–13.
Google Scholar
Dominici M, Le Blanc K, et al. Minimal criteria for defining mulipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8:315.
CAS
PubMed
Google Scholar
Peng L et al. Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue. Stem Cells Dev. 2008;17(4):761–74.
CAS
PubMed
Google Scholar
Alvarez-Viejo M, et al. Quantifying mesenchymal stem cells in the mononuclear cell fraction of bone marrow samples obtained for cell therapy. Trans Proc. 2013;45(1):434–439.
CAS
Google Scholar
Kern S, Eichler H, Stoeve J, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294–301.
CAS
PubMed
Google Scholar
Lee RH et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem. 2004;14(4-6):311–24.
CAS
PubMed
Google Scholar
Zuk PA et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95.
CAS
PubMed
PubMed Central
Google Scholar
De Ugarte DA et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174(3):101–9.
PubMed
Google Scholar
Baksh D, Yao R, Tuan R. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells. 2007;25(6):1384–92.
CAS
PubMed
Google Scholar
Nekanti U et al. Long-term expansion and pluripotent marker array analysis of Wharton’s jelly-derived mesenchymal stem cells. Stem Cells Dev. 2010;19(1):117–30.
CAS
PubMed
Google Scholar
Subramanian A et al. Human umbilical cord Wharton’s jelly mesenchymal stem cells do not transform to tumor-associated fibroblasts in the presence of breast and ovarian cancer cells unlike bone marrow mesenchymal stem cells. J Cell Biochem. 2012;113(6):1886–95.
CAS
PubMed
Google Scholar
Le Blanc K, Tammik C, Rosendahl K, et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003;31:890–6.
PubMed
Google Scholar
Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331:889–95.
CAS
PubMed
Google Scholar
Brittberg M, Nilsson A, Lindahl A, et al. Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin Orthop Relat Res. 1996;326:270–83.
Google Scholar
Chiang H et al. Repair of porcine articular cartilage defect with autologous chondrocyte transplantation. J Orthop Res. 2005;23(3):584–93.
PubMed
Google Scholar
Rahfoth B, Weisser J, Sternkopf F, et al. Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits. Osteoarthritis Cartilage. 1998;6:50–65.
CAS
PubMed
Google Scholar
Peterson L, Minas T, Brittberg M, et al. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res. 2000;374:212–34.
Google Scholar
Ahsan T, Lottman LM, Harwood F, et al. Integrative cartilage repair: inhibition by beta-aminopropionitrile. J Orthop Res. 1999;17:850–7.
CAS
PubMed
Google Scholar
von der Mark K, Gauss V, von der Mark H, et al. Relationship between cell shape and type of collagen synthesized as chondrocytes lose their cartilage phenotype in culture. Nature. 1977;267:531–2.
PubMed
Google Scholar
Marlovits S, Hombauer M, Truppe M. Changes in the ratio of type-I and type-II collagen expression during monolayer culture of human chondrocytes. J Bone Joint Surg Br. 2004;86:286–95.
CAS
PubMed
Google Scholar
Roberts S et al. Autologous chondrocyte implantation for cartilage repair: monitoring its success by magnetic resonance imaging and histology. Arthritis Res Ther. 2003;5(1):60–73.
Google Scholar
Steadman JR, Brigss KK, Rodrigo JJ, et al. Outcomes of microfracture for traumatic chodnral defects of the knee: average 11-year follow-up, arthroscopy. J Arthro Relat Surg. 2003;19(5):477–84.
Google Scholar
Jakobsen RB, Engebtretsen L, Slauterbeck JR. An analysis of the quality of cartilage repair studies. J Bone Joint Surg Am. 2005;87(10):2232–9.
PubMed
Google Scholar
Magnussen RA, Dunn WR, Carey JL, et al. Treatment of focal articular cartilage defects in the knee: a systematic review. Clin Orthop Relat Res. 2008;466(4):952–62.
PubMed
PubMed Central
Google Scholar
Hunt S, Sherman O. Arthroscopic treatment of osteochondral lesions of the talus with correlation of outcome scoring systems. J Arthro Rel Surg. 2003;19(4):360–7.
Google Scholar
Mithoefer K, McADmas T, Willians RJ, et al. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: and evidence-based systematic analysis. Am J Sports Med. 2009;37(10):2053–6.
PubMed
Google Scholar
Steinwachs MR, Guggi T, Kreuz PC. Marrow stimulation techniques. Injury. 2008;39(1):S26–31.
PubMed
Google Scholar
Hangody L, Füles P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints. J Bone Joint Surg. 2003;85(2):25–32.
PubMed
Google Scholar
Bodo G, Hangody L, Szabo Z, et al. Arthroscopic autologous osteochondral mosaicplasty for the treatment of subchondral cystic lesion in the medial femoral condyle in a horse. Acta Vet Hung. 2000;48:343–54.
CAS
PubMed
Google Scholar
Wohl G, Goplen G, Ford J, et al. Mechanical integrity of subchondral bone in osteochondral autografts and allografts. Can J Surg. 1998;41:228–33.
CAS
PubMed
PubMed Central
Google Scholar
Bentley G, Biant LC, Carrington RW. A prospective, randomized comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br. 2003;85(2):223–30.
CAS
PubMed
Google Scholar
Im GI, Kim DY, Shin JH, et al. Repair of cartilage defect in the rabbit with cultured mesenchymal stem cells from bone marrow. J Bone Joint Surg Br. 2001;83:289–94.
CAS
PubMed
Google Scholar
Grigolo B, Lisignoli G, Desando G, Cavallo C, Marconi E, Tschon M, Giavaresi G, Fini M, Giardino R. Osteoarthritis treated with mesenchymal stem cells on hyaluronan-based scaffold in rabbit. Tissue Eng Part C Methods. 2009;15:647–58.
CAS
PubMed
Google Scholar
Cui L, Wu Y, Cen L, et al. Repair of articular cartilage defect in non-weight bearing areas using adipose derived stem cells loaded polyglycolic acid mesh. Biomaterials. 2009;30(14):2683–93.
CAS
PubMed
Google Scholar
Dragoo J et al. Healing full-thickness cartilage defects using adipose-derived stem cells. Tissue Eng. 2007;13(7):1615–21.
CAS
PubMed
Google Scholar
Wakitani S, Goto T, Pineda SJ, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1994;76:579–92.
CAS
PubMed
Google Scholar
Liu Y, Shu XZ, Prestwich GD. Osteochondral defect repair with autologous bone marrow-derived mesenchymal stem cells in an injectable, in situ, cross-linked synthetic extracellular matrix. Tissue Eng. 2006;12:3405–16.
CAS
PubMed
Google Scholar
Alfaqeh H, Norhamdan MY, Chua KH, et al. Cell based therapy for osteoarthritis in a sheep model: gross and histological assessment. Med J Malaysia. 2008;63(Suppl A):37–8.
PubMed
Google Scholar
Wakitani S, Imoto K, Yamamoto T, et al. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage. 2002;10:199–206.
CAS
PubMed
Google Scholar
Nejadnik H, Hui JH, Feng Choong EP, et al. Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med. 2010;38:1110–6.
PubMed
Google Scholar
Johnstone B, Hering TM, Caplan AI, et al. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res. 1998;238:265–72.
CAS
PubMed
Google Scholar
Shen G. The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage. Orthod Craniofac Res. 2005;8(1):11–7.
CAS
PubMed
Google Scholar
van Buul GM, Siebelt M, Leijs MJ, et al. Mesenchymal stem cells reduce pain but no degenerative changes in a mono-iodoacetate rat model of osteoarthritis. J Orthop Res. 2014;32(9):1167–74.
PubMed
Google Scholar
Murphy JM, Fink DJ, Hunziker EB, et al. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 2003;48:3464–74.
PubMed
Google Scholar
Lee KB, Hui JH, Song IC, Ardany L, et al. Injectable mesenchymal stem cell therapy for large cartilage defects—a porcine model. Stem Cell. 2007;25:2964–71.
Google Scholar
Saw KY, Hussin P, Loke SC, et al. Articular cartilage regeneration with autologous marrow aspirate and hyaluronic acid: an experimental study in a goat model. Arthroscopy. 2009;25(12):1391–400.
PubMed
Google Scholar
Black L, Gaynor J, Adams C, et al. Effect of intra-articular injection of autologous adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in dogs. Vet Ther. 2008;9:192–200.
PubMed
Google Scholar
Centeno C, Busse D, Kisiday J, et al. Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician. 2008;11(3):343–53.
PubMed
Google Scholar
Centeno C, Kisiday J, Freeman M, et al. Partial regeneration of the human hip via autologous bone marrow nucleated cell transfer: a case study. Pain Physician. 2006;9:253–6.
PubMed
Google Scholar
Centeno C, Schultz J, Cheever M. Safety and complications reporting on the re-implantation of culture-expanded mesenchymal stem cells using autologous platelet lysate technique. Curr Stem Cell. 2011;5(1):81–93.
Google Scholar
Pak J. Regeneration of human bones in hip osteonecrosis and human cartilage in knee osteoarthritis with autologous adipose derived stem cells: a case series. J Med Case Rep. 2001;5:296.
Google Scholar
Kuroda R, Ishida K, et al. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis Cartilage. 2007;15:226–31.
CAS
PubMed
Google Scholar
Emadedin M, Aghdami N, Taghiyar L, et al. Intra-articular injection of autologous mesenchymal stem cells in six patients with knee osteoarthritis. Arch Iran Med. 2012;15(7):422–8.
PubMed
Google Scholar
Saw KY et al. Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial. Arthroscopy. 2013;29(4):684–94.
PubMed
Google Scholar
Vangsness CT, Farr J, Boyd J, et al. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy. J Bone Joint Surg. 2014;96(2):90–8.
PubMed
Google Scholar
Jo CH, Lee YG, Shin WH, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof of concept clinical trial. Stem Cells. 2014;32(5):1254–66.
CAS
PubMed
Google Scholar
Vega, Aurelio, et al. Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells: a randomized controlled trial. Transplantation. 2015;99(8):1681–90.
CAS
PubMed
Google Scholar
Davatchi F, Sadeghi-Abdollahi B, Mohyeddin M, et al. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int J Rheum Dis. 2011;14(2):211–5.
PubMed
Google Scholar
ADIPOA Report Summary. CORDIS - European Commission, http://cordis.europa.eu/result/rcn/156167_en.html. [Last Accessed 19 May 2016].
Tucker JD, Ericksen JJ, Goetz LL, et al. Should clinical studies involving “regenerative injection therapy”, strive to incorporate a triad of outcome measures instead of only including clinical outcome measures? Osteoarthritis Cartilage. 2014;22(6):715–7.
CAS
PubMed
Google Scholar
Qureshi A, Chaoji V, Maiguel D, et al. Proteomic and phospho-proteomic profile of human platelets in Basal, resting state: insights into integrin signaling. PLoS One. 2009;4:e7627.
PubMed
PubMed Central
Google Scholar
Zhu Y et al. Basic science and clinical application of platelet-rich plasma for cartilage defects and osteoarthritis: a review. Osteoarthritis Cartilage. 2013;21(11):1627–37.
CAS
PubMed
Google Scholar
Ng F et al. PDGF, TGF-β, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood. 2008;112(2):295–307.
CAS
PubMed
Google Scholar
Song QH et al. TGF- (beta) 1 and FGF-2 mRNA expression during fibroblast wound healing. J Clin Pathol. 2002;55(3):164.
CAS
Google Scholar
Mifune Y, Matsumoto T, Takayama K, et al. The effect of platelet-rich plasma on the regenerative therapy of muscle derived stem cells for articular cartilage repair. Osteoarthritis Cartilage. 2013;21(1):175–85.
CAS
PubMed
Google Scholar
Weiss S, Hennig T, Bock R, et al. Impact of growth factors and PTHrP on early and late chondrogenic differentiation of human mesenchymal stem cells. J Cell Physiol. 2010;223:84–93.
CAS
PubMed
Google Scholar
Koh YG, Jo SB, Kwon OR, et al. Mesenchymal stem cell injections improve symptoms of knee osteoarthritis. Arthroscopy. 2013;29:1e8.
Google Scholar
Xie X, Wang Y, Zhao C, et al. Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration. Biomaterials. 2012;33:7008e18.
Google Scholar
Haleem AM, Singergy AA, Sabry D, et al. The clinical use of human culture-expanded autologous bone marrow mesenchymal stem cells trans- planted on platelet-rich fibrin glue in the treatment of articular cartilage defects: a pilot study and preliminary results. Cartilage. 2010;1:253e61.
Google Scholar
Lee HR, Park KM, Joung YK, Park KD, et al. Platelet-rich plasma loaded hydrogel scaffold enhances chondrogenic differentiation and maturation with up-regulation of CB1 and CB2. J Control Release. 2012;159(3):332–7.
CAS
PubMed
Google Scholar
Giannini S, Buda R, Cavallo M, et al. Cartilage repair evolution in post-traumatic osteochondral lesions of the talus: from open field autologous chondrocyte to bone-marrow-derived cells transplantation. Injury. 2010;41:1196e203.
Google Scholar
Maniwa S, Ochi M, Motomura T, et al. Effects of hyaluronic acid and basic fibroblast growth factor on motility of chondrocytes and synovial cells in culture. Acta Orthop Scand. 2001;72:299–303.
CAS
PubMed
Google Scholar
Matsiko A et al. Addition of hyaluronic acid improves cellular infiltration and promotes early-stage chondrogenesis in a collagen-based scaffold for cartilage tissue engineering. J Mech Behav Biomed Mater. 2012;11:41–52.
CAS
PubMed
Google Scholar
Zhu H et al. The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells. 2006;24(4):928–35.
CAS
PubMed
Google Scholar
Toole, BP. Hyaluronan in morphogenesis. Seminars in cell & developmental biology. Academic Press. 2001;12(2):79–87.
CAS
Google Scholar
Snyder TN et al. A fibrin/hyaluronic acid hydrogel for the delivery of mesenchymal stem cells and potential for articular cartilage repair. J Biol Eng. 2014;8:10.
PubMed
PubMed Central
Google Scholar
US National Institutes of Health: ClinicalTrials.gov. http://clinicaltrials.gov/ct2/results?term=mesenchymal+stem+cells&Search=Search. [Accessed June 2015].
Rubio D, Carcia-Castro J, Martin M, et al. Spontaneous human adult stem cell transformation. Cancer Res. 2005;65:3035.
CAS
PubMed
Google Scholar
Rubio D, Carcia-Castro J, Martin M, et al. Retraction: Spontaneous human adult stem cell transformation. Cancer Res. 2010;70:6682.
Google Scholar
Rosland GV, Svendsen A, Torsvik A, et al. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res. 2009;69:5531.
Google Scholar
Torsvik A, Rosland GV, Svendsen A, et al. Spontaneous malignant transformation of human mesenchymal stem cells reflects cross contamination: putting the research field on track – letter. Cancer Res. 2010;70:6393.
CAS
PubMed
Google Scholar
Pan Q, Fouraschen SM, de Ruiter PE, et al. Detection of spontaneous tumorigenic transformation during culture expansion of human mesenchymal stromal cell. Exp Biol Med. 2014;239(1):105–15.
Google Scholar
Bernardo M, Zaffaroni N, Novara F, et al. Human bone marrow-derived mesenchymal stem cells do not undergo transformation after long term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res. 2007;67:9142.
CAS
PubMed
Google Scholar
Lalu ML, McIntyre L, et al. Safety of cell therapy with mesenchymal stromal cells (safe cell): a systematic review and meta-analysis of clinical trials. PLoS One. 2012;7(10):e47559.
CAS
PubMed
PubMed Central
Google Scholar
Peeters CM, Leijs MJ, et al. Safety of intra-articular cell-therapy with culture-expanded stem cells in humans: a systematic literature review. Osteo Cartilage. 2013;21(10):1465–73.
CAS
Google Scholar
Bielecki TM, Gazdzik TS, Arendt J, et al. Antibacterial effect of autologous platelet gel enriched with growth factors and other active substances: an in vitro study. J Bone Joint Surg Br. 2007;89:417e20.
Google Scholar