Excellence NIfHaC: Osteoarthritis: the care and management of osteoarthritis in adults (CG59). 2008, London: National Institute for Health and Care Excellence
Google Scholar
Henrotin Y, Kurz B, Aigner T: Oxygen and reactive oxygen species in cartilage degradation: friends or foes?. Osteoarthritis Cartilage. 2005, 13 (8): 643-654. 10.1016/j.joca.2005.04.002.
Article
CAS
PubMed
Google Scholar
Goldring MB, Berenbaum F: The regulation of chondrocyte function by proinflammatory mediators: prostaglandins and nitric oxide. Clin Orthop Relat Res. 2004, S37-S46. 427 Suppl
Aida Y, Maeno M, Suzuki N, Namba A, Motohashi M, Matsumoto M, Makimura M, Matsumura H: The effect of IL-1beta on the expression of inflammatory cytokines and their receptors in human chondrocytes. Life Sci. 2006, 79 (8): 764-771. 10.1016/j.lfs.2006.02.038.
Article
CAS
PubMed
Google Scholar
Sato T, Konomi K, Yamasaki S, Aratani S, Tsuchimochi K, Yokouchi M, Masuko-Hongo K, Yagishita N, Nakamura H, Komiya S, Beppu M, Aoki H, Nishioka K, Nakajima T: Comparative analysis of gene expression profiles in intact and damaged regions of human osteoarthritic cartilage. Arthritis Rheum. 2006, 54 (3): 808-817. 10.1002/art.21638.
Article
CAS
PubMed
Google Scholar
Aigner T, Fundel K, Saas J, Gebhard PM, Haag J, Weiss T, Zien A, Obermayr F, Zimmer R, Bartnik E: Large-scale gene expression profiling reveals major pathogenetic pathways of cartilage degeneration in osteoarthritis. Arthritis Rheum. 2006, 54 (11): 3533-3544. 10.1002/art.22174.
Article
CAS
PubMed
Google Scholar
Reynard LN, Loughlin J: Genetics and epigenetics of osteoarthritis. Maturitas. 2012, 71 (3): 200-204. 10.1016/j.maturitas.2011.12.001.
Article
CAS
PubMed
Google Scholar
Roach HI, Aigner T: DNA methylation in osteoarthritic chondrocytes: a new molecular target. Osteoarthritis Cartilage. 2007, 15 (2): 128-137. 10.1016/j.joca.2006.07.002.
Article
CAS
PubMed
Google Scholar
Bird A: DNA methylation patterns and epigenetic memory. Genes Dev. 2002, 16 (1): 6-21. 10.1101/gad.947102.
Article
CAS
PubMed
Google Scholar
Reik W: Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 2007, 447 (7143): 425-432. 10.1038/nature05918.
Article
CAS
PubMed
Google Scholar
Hashimoto K, Oreffo RO, Gibson MB, Goldring MB, Roach HI: DNA demethylation at specific CpG sites in the IL1B promoter in response to inflammatory cytokines in human articular chondrocytes. Arthritis Rheum. 2009, 60 (11): 3303-3313. 10.1002/art.24882.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feinberg AP: Phenotypic plasticity and the epigenetics of human disease. Nature. 2007, 447 (7143): 433-440. 10.1038/nature05919.
Article
CAS
PubMed
Google Scholar
Cheung KS, Hashimoto K, Yamada N, Roach HI: Expression of ADAMTS-4 by chondrocytes in the surface zone of human osteoarthritic cartilage is regulated by epigenetic DNA de-methylation. Rheumatol Int. 2009, 29 (5): 525-534. 10.1007/s00296-008-0744-z.
Article
CAS
PubMed
Google Scholar
Roach HI, Yamada N, Cheung KS, Tilley S, Clarke NM, Oreffo RO, Kokubun S, Bronner F: Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. Arthritis Rheum. 2005, 52 (10): 3110-3124. 10.1002/art.21300.
Article
CAS
PubMed
Google Scholar
de Andres MC, Imagawa K, Hashimoto K, Gonzalez A, Roach HI, Goldring MB, Oreffo RO: Loss of methylation in CpG sites in the NF-kappaB enhancer elements of inducible nitric oxide synthase is responsible for gene induction in human articular chondrocytes. Arthritis Rheum. 2013, 65 (3): 732-742. 10.1002/art.37806.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rajpurohit R, Koch CJ, Tao Z, Teixeira CM, Shapiro IM: Adaptation of chondrocytes to low oxygen tension: relationship between hypoxia and cellular metabolism. J Cell Physiol. 1996, 168 (2): 424-432. 10.1002/(SICI)1097-4652(199608)168:2<424::AID-JCP21>3.0.CO;2-1.
Article
CAS
PubMed
Google Scholar
Grimshaw MJ, Mason RM: Modulation of bovine articular chondrocyte gene expression in vitro by oxygen tension. Osteoarthritis Cartilage. 2001, 9 (4): 357-364. 10.1053/joca.2000.0396.
Article
CAS
PubMed
Google Scholar
Zhou S, Cui Z, Urban JP: Factors influencing the oxygen concentration gradient from the synovial surface of articular cartilage to the cartilage-bone interface: a modeling study. Arthritis Rheum. 2004, 50 (12): 3915-3924. 10.1002/art.20675.
Article
PubMed
Google Scholar
Strobel S, Loparic M, Wendt D, Schenk AD, Candrian C, Lindberg RL, Moldovan F, Barbero A, Martin I: Anabolic and catabolic responses of human articular chondrocytes to varying oxygen percentages. Arthritis Res Ther. 2010, 12 (2): R34-10.1186/ar2942.
Article
PubMed
PubMed Central
Google Scholar
Pritzker KP, Gay S, Jimenez SA, Ostergaard K, Pelletier JP, Revell PA, Salter D, van den Berg WB: Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage. 2006, 14 (1): 13-29. 10.1016/j.joca.2005.07.014.
Article
CAS
PubMed
Google Scholar
da Silva MA, Yamada N, Clarke NM, Roach HI: Cellular and epigenetic features of a young healthy and a young osteoarthritic cartilage compared with aged control and OA cartilage. J Orthop Res. 2009, 27 (5): 593-601. 10.1002/jor.20799.
Article
CAS
PubMed
Google Scholar
Haaf T: The effects of 5-azacytidine and 5-azadeoxycytidine on chromosome structure and function: implications for methylation-associated cellular processes. Pharmacol Ther. 1995, 65 (1): 19-46. 10.1016/0163-7258(94)00053-6.
Article
CAS
PubMed
Google Scholar
Hashimoto K, Kokubun S, Itoi E, Roach HI: Improved quantification of DNA methylation using methylation-sensitive restriction enzymes and real-time PCR. Epigenetics. 2007, 2 (2): 86-91. 10.4161/epi.2.2.4203.
Article
PubMed
Google Scholar
Tardif G, Pelletier JP, Dupuis M, Hambor JE, Martel-Pelletier J: Cloning, sequencing and characterization of the 5′-flanking region of the human collagenase-3 gene. Biochem J. 1997, 323 (Pt 1): 13-16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang P, Jimenez SA, Stokes DG: Regulation of human COL9A1 gene expression. Activation of the proximal promoter region by SOX9. J Biol Chem. 2003, 278 (1): 117-123.
Article
CAS
PubMed
Google Scholar
Thoms BL, Dudek KA, Lafont JE, Murphy CL: Hypoxia promotes the production and inhibits the destruction of human articular cartilage. Arthritis Rheum. 2013, 65 (5): 1302-1312. 10.1002/art.37867.
Article
CAS
PubMed
Google Scholar
Markway BD, Cho H, Johnstone B: Hypoxia promotes redifferentiation and suppresses markers of hypertrophy and degeneration in both healthy and osteoarthritic chondrocytes. Arthritis Res Ther. 2013, 15 (4): R92-10.1186/ar4272.
Article
PubMed
PubMed Central
Google Scholar
Studer D, Millan C, Ozturk E, Maniura-Weber K, Zenobi-Wong M: Molecular and biophysical mechanisms regulating hypertrophic differentiation in chondrocytes and mesenchymal stem cells. Eur Cell Mater. 2012, 24: 118-135. discussion 135
CAS
PubMed
Google Scholar
Hashimoto K, Otero M, Imagawa K, de Andres MC, Coico JM, Roach HI, Oreffo RO, Marcu KB, Goldring MB: Regulated transcription of human matrix metalloproteinase 13 (MMP13) and interleukin-1beta (IL1B) genes in chondrocytes depends on methylation of specific proximal promoter CpG sites. J Biol Chem. 2013, 288 (14): 10061-10072. 10.1074/jbc.M112.421156.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Andres MC, Kingham E, Imagawa K, Gonzalez A, Roach HI, Wilson DI, Oreffo RO: Epigenetic regulation during fetal femur development: DNA methylation matters. PLoS ONE. 2013, 8 (1): e54957-10.1371/journal.pone.0054957.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zanni M, Tamburro A, Santone I, Rotilio D: Modulation by transforming growth factor-beta 1 and interleukin-1 beta of proteoglycan release and chondrodisaccharide composition in porcine articular cartilage. Semin Thromb Hemost. 1994, 20 (2): 159-167. 10.1055/s-2007-1001899.
Article
CAS
PubMed
Google Scholar
Redini F, Galera P, Mauviel A, Loyau G, Pujol JP: Transforming growth factor beta stimulates collagen and glycosaminoglycan biosynthesis in cultured rabbit articular chondrocytes. FEBS Lett. 1988, 234 (1): 172-176. 10.1016/0014-5793(88)81327-9.
Article
CAS
PubMed
Google Scholar
Morales TI: Transforming growth factor-beta 1 stimulates synthesis of proteoglycan aggregates in calf articular cartilage organ cultures. Arch Biochem Biophys. 1991, 286 (1): 99-106. 10.1016/0003-9861(91)90013-9.
Article
CAS
PubMed
Google Scholar
Redini F, Mauviel A, Pronost S, Loyau G, Pujol JP: Transforming growth factor beta exerts opposite effects from interleukin-1 beta on cultured rabbit articular chondrocytes through reduction of interleukin-1 receptor expression. Arthritis Rheum. 1993, 36 (1): 44-50. 10.1002/art.1780360108.
Article
CAS
PubMed
Google Scholar
Gunther M, Haubeck HD, van de Leur E, Blaser J, Bender S, Gutgemann I, Fischer DC, Tschesche H, Greiling H, Heinrich PC, Graeve L: Transforming growth factor beta 1 regulates tissue inhibitor of metalloproteinases-1 expression in differentiated human articular chondrocytes. Arthritis Rheum. 1994, 37 (3): 395-405. 10.1002/art.1780370314.
Article
CAS
PubMed
Google Scholar
Su S, Dehnade F, Zafarullah M: Regulation of tissue inhibitor of metalloproteinases-3 gene expression by transforming growth factor-beta and dexamethasone in bovine and human articular chondrocytes. DNA Cell Biol. 1996, 15 (12): 1039-1048. 10.1089/dna.1996.15.1039.
Article
CAS
PubMed
Google Scholar
Imagawa K, de Andres MC, Hashimoto K, Itoi E, Otero M, Roach HI, Goldring MB, Oreffo RO: Association of Reduced Type IX Collagen Gene Expression in Human Osteoarthritic Chondrocytes With Epigenetic Silencing by DNA Hypermethylation. Arthritis & Rheumatology. 2014, 66 (11): 3040-3051. 10.1002/art.38774.
Article
CAS
Google Scholar
Silver IA: Measurement of pH and ionic composition of pericellular sites. Philos Trans R Soc Lond B Biol Sci. 1975, 271 (912): 261-272. 10.1098/rstb.1975.0050.
Article
CAS
PubMed
Google Scholar
Grimshaw MJ, Mason RM: Bovine articular chondrocyte function in vitro depends upon oxygen tension. Osteoarthritis Cartilage. 2000, 8 (5): 386-392. 10.1053/joca.1999.0314.
Article
CAS
PubMed
Google Scholar