This study examined the biomechanical properties of a newly designed built-in expandable anterior spinal fixation system. The results showed that the 3D ROM afforded by the new device was similar to that of the Z-Plate and Kaneda systems, though the Z-plate and Kaneda groups had significantly higher left axial and right axial rotation ROM as compared to expandable device. The maximum torque of the expandable device was greater than that of a common screw, as was the maximum pullout force of the device in both the unexpanded or expanded state.
With the built-in expandable anterior thoracolumbar fixation system the vertebral screw and the rod are completely implanted within the vertebra. This avoids disturbing blood vessels, nerves, and soft tissue around the vertebra, thus overcoming a shortcoming of the screw-rod system. The connecting rod is closer to the center of mechanical transmission, and its torque is relatively short compared to traditional internal fixation devices, which prevents easy screw breakage. In addition, implantation is not affected by the shape of the vertebra, which overcomes a shortcoming of the screw-plate system. Because the system is completely built-in, it can be implanted via the lateral, anterolateral, and anterior approaches. Expansion of the distal end of the fixator increases both the holding force and the anti-rotation capacity of the vertebral screw, overcoming the poor anti-rotation capacity of the single screw-rod system. The aperture on the leaflet in the distal end of the vertebral screw, and the gap between leaflets, connect bone fragments within the vertebral screw and bone outside of the screw, thus promoting bone ingrowth to achieve true permanent fixation, i.e., the system is designed such that the implant and vertebral body become fused together, and thus the implant cannot be removed. Lastly, the vertebral screw is designed to have a long tail, which can be used for distraction and compression of the intervertebral disc space, and can be broken off after surgery.
Fresh adult pig spines are similar to the human spine, they are easily obtained, and specimens of the same weight, age, and size are simple to identify. For these reasons the porcine spine is an ideal animal specimen for testing the biomechanical properties of internal fixation devices in the thoracolumbar spine [16]. The characteristics of spine motion indicate that the load of the specimen is the moment applied to the cephalic and caudal ends. Because of the complexity and individual differences of in vivo spine loading, the moment is closely related to the amount of regular exercise an individual receives. In addition, the moments on different segments of a spine specimen are different. The loaded torsional moment can at least guarantee normal ROM of a spine specimen.
Though the ROM of the whole spine is large, the amplitude of the motion of each segment is relatively small. The true load-deformation curve of a functional spinal unit is 2-phase and non-linear [15]. At the initial portion of the curve, the deformation is relatively small and the corresponding gradient is also relatively small. As the load increases, the deformation resistance increases. The first stage of motion, the initial portion of the curve with a small gradient, is termed the NZ. When the load increases and exceeds the limitations of the NZ, the resistance to deformation increases significantly. This is the second stage of the curve, and is termed the EZ. The sum of the NZ and EZ represent the total physiological activity (ROM) of a functional spinal unit [15]. However, evaluation of a multi-segmental spinal unit (MSU) is more valuable when examining the biomechanical effect of different instrumentation systems [13, 15].
Internal fixation of the spine mainly aims to provide sufficient stability before rigid fusion of the spine occurs [1, 2]. High immediate stability after internal fixation increases the fusion rate of interbody bone grafting [17], and reduces the rate of internal fixation failure. All spinal fixation systems provide biomechanical stability; however, stiffness of the spine after instrumentation has been shown to be related to the design of instrumentation system, rather than if it is a plate or rod style system [18, 19].
We found that the maximum torque and pullout force of the expandable device were greater than that of a common fixation screw. Both anterior and posterior internal fixation screws are affected by axial pullout force, flexion force, and rotation force. Screw loosening and pullout are the result of the combined effects of these 3 forces. Most biomechanical experiments use axial pullout force as an indicator of screw holding strength [20]. Screw pullout force is related to screw shape, diameter, and depth of insertion, and bone density, and the most important factors are screw diameter, length, and bone density [20]. All screws used in the current study were 30 mm in length, which eliminated the effect of screw length on the results. The maximum axial pullout force (F-max) of the screw depends on the shear stress between the screw and bone; namely, when the contact area between the screw and the bone is large, the shear stress is large. Liu et al. [21] consider that axial pullout of a screw may induce a torque ‘spinning out’ the screw because there is a certain inclination in the screw thread, and this may accelerate screw loosening. Therefore, when only the axial pullout force is examined there is a limitation in the evaluation of anterior screw stabilityRotational torque depends on the friction at the interface between the screw and the bone, and is represented by f = μ × N, where f is the force of friction, μ is the friction coefficient of the screw-bone interface, and N is the positive pressure of the screw-bone interface. The rotational torque of a common screw depends on the force at the screw-bone interface, and its size is relatively limited.
In general, pullout force increases with enlargement of the screw diameter. In a cadaveric study, Willett et al. [22] reported that the mean pull-out force for a 6-mm screw was 597 N, significantly greater than the mean force of 405 N for a 5 mm screw. Large diameter screws compress the cancellous and trabecular bone during screw insertion to form a dense bone layer, and thus the screw thread is embedded in dense bone thereby increasing the pullout force of the screw [23]. Study has shown no significant difference in the maximum axial pullout force of screws less than 1 mm in diameter, but there is a significant difference when the screw diameter is more than 1 mm [24]. Krag et al. [25] reported that screwing-in torque increased significantly when the diameter of a screw increased from 6 mm to 8 mm.
The diameter of the unexpanded screw in the current study was 6.5 mm, which is larger than that of common screws, and the diameter of the screw tip becomes larger after expansion. The F-max of the common screw was 1,826.67 ± 260.25 N, that of the unexpanded anterior fixation screw was 2,333.49 ± 310.14 N, and that of the expanded anterior fixation screw was 3,035.48 ± 252 N, which was 30.09% more than the pullout force of the unexpanded screw and 65.14% more than that of the common anterior fixation screw. By inserting an inner core into the expandable anterior thoracolumbar fixation screw, the screw tip expands. This increases the screw diameter to increase the holding force, and pushes the leaflet in the distal end of the screw to create a “claw” shape that increases the contact area with the bone, also increasing the holding force.
A greater pullout force is especially important in patients with osteoporosis. Study has shown a positive correlation between bone mineral density (BMD) and F-max; namely, the greater BMD, the greater the fixation strength [26]. Li et al. [27] defined a BMD below 0.9 g/cm2 as osteoporosis, and found that the F-max and bending moment of screws were 1,062.8 ± 72.2 N and 2.6 N.m, respectively, in bone with a BMD above the cutoff, and 232 ± 92.4 N and 0.49 N.m in osteoporotic bone. Okuyama et al. [26] reported that the F-max of a screw decreases 60 N when the BMD decreases 0.01 g/cm2 in osteoporotic vertebrae. Similarly, Yamagata et al. [28] reported that the F-max of a screw decreases l0 kPa when the BMD decreases 100 mg/cm2. Cook et al. [29] applied expandable screws to human spine specimens and found that there was positive correlation between BMD and F-max. In the current study, we used a randomized design to help exclude the impact of bone density on the results.
There are limitations of this study that should be considered. The number of specimens tested was small, and while fresh adult pig specimens closely resemble the human spine, the number of thoracic vertebra is not the same as in the human spine (the pigspine has 15 thoracic vertebra). Because this study used pig spine specimens, and the absolute values for torque and pullout force will be different than if testing were done in vivo. Because the diameter of the screws used in the MAC system is large and can damage the vertebral body, we did not include MAC system in the study. In an adult thoracolumbar spine screws 6 mm or 6.5 mm are commonly used. In China, the diameter of most screws used with the thoracolumbar anterior single screw-rod system are 5.5 mm, which is why 5.5 mm screws were used in this study. The difference in screw diameter will have affected the pullout strength results. In this study the pull- out strength of a single screw was compared among the 3 systems. The results may be different clinically as in the Kaneda and Z-plate 2 screws are used in each vertebra which may increase the overall pullout force. We did not perform fatigue testing or 3-point bending testing of the new system. Lastly, a finite element analysis should be carried out to study the load-carrying capacity of the screw, and provide a theoretical basis for further improvement of the design.