With the incidence range of 0.5-5%, the perinatal brachial plexus palsy remains a concerning and challenging complication, despite the advances in obstetrics [10, 12, 13]. The majority of cases achieve a satisfactory recovery without surgical intervention [8, 13] and, in particular, in cases of upper injuries of brachial plexus [5, 6]. However, in total palsies, the spontaneous reinnervation may be significantly limited [6, 8–10, 13]. In severe cases of perinatal brachial plexus palsy, where no functional recovery is observed during first months of life, a surgical intervention is indicated [6, 8, 9, 13]. In our study, which aimed to assess the effect of perinatal brachial plexus lesion on upper limb development, we examined a group of 44 patients of 2 to 16 years of age surgically treated during infancy.
We found, by comparing the examined dimensions between groups of upper-middle and total lesions, a statistically significant difference in the degree of decrease of arm, forearm and hand length as well as hand width. Deficit of these dimensions was shown to be more significant in total brachial plexus palsy – Table 5. As such, our results partially differ from McDaid’s observations, as he did not find differences in size of arm abbreviation despite statistically significant differences between deficit of forearm length in groups with upper and total lesions [12]. However, the most surprising observation was the decrease of hand dimensions in the group of upper-middle lesions – Table 5.
Our observations included in Tables 7, 8 and 9 reaffirm the results of Bae and co., who found no correlation between the degree of reduction of the upper limb dimensions and its motor function. They also concluded that the degree of difference should not be utilized for the purpose of estimation of upper limb impairment [10]. However, in terms of hand measurements, we found a statistically significant difference between degree of hand length and width decrease and its useful and useless function – Figure 1. This substantiates Terzis and Kokkalis’ research, in which they noted a significant correlation between upper limb length discrepancies and upper limb motions [13].
In our material we did not find a correlation between the time of the surgical procedure and the degree of the underdevelopment of upper extremity – Table 11. The correlation was found neither in the whole examined group nor in the particular types of injuries (upper-middle injuries, total injuries). We also did not observe any statistically significant differences between degree of decrease of upper extremity dimensions in particular age groups that indicated time of the surgical procedure (Groups A, B, C). This was the case for both total injuries, and upper-middle injuries. Our findings differ from the results published by Terzis and Kokkalis [13]. It might be ascribed to the difference between clinical materials and, more specifically to difference between the time of the operation and percent of total injuries. In our material the mean time between birth and surgery was 5.4 months (range 3-12 months) and the proportion of total injuries was 59%. In Terzis and Kokkalis’ research these values were 26.4 months (range 2-108 months) and 78% respectively [13]. The time between injury and microsurgical treatment is an important yet not the only factor determining the final outcome of surgery. It is also important to highlight that positive results can be achieved in children treated microsurgically in age 3, 6 or 9 months of life. In children above the age of 18 months microsurgical treatment becomes less advantageous and tendon transfers appear to be the method of choice [1, 2, 5–9].
While comparing the degree of decrease of upper extremity dimensions we observed that, depending on the type of surgical procedure (neurolysis, reconstruction), there is a statistically significant difference in measurement: forearm length, hand length and width – Table 10. The degree of the underdevelopment was greater in patients who underwent a microsurgical reconstructions (direct neurorrhaphy, reconstruction with sural nerve grafts, extraanatomical reconstruction). These procedures were carried out only in the group of total injuries (26 cases: 16 reconstructions, 10 neurolysis). In cases of upper-middle injuries (18 cases) with initially normal hand function only neurolysis was performed.
Furthermore, we did not find a correlation between degree of circumferences and lengths deficit on sick side and age of examined patients who ranged from 2 to 16 years of age. McDaid’s observations of a group of patients aged between 4 and 16 years (average age 8.6 years) were convergent [12]. On the basis of clinical material, which included 48 patients aged between 1 and 169 months (average age 47 months). Bae and co. drew similar conclusion and found no correlation between age and degree of decrease of examined dimensions of upper limb on injured side [10]. Therefore, we have come to the conclusion that disparities between upper limbs develop in early childhood and do not increase with age. The reason of this disorder is not fully explained [10, 12, 13]. The differences between upper limbs in children with obstetrical brachial plexus palsy may be generated by the incorrect function of paralysed muscles of upper limb as well as deficiency in correctly directed mechanical loads in the early period of bone-joint system development [12]. The reduction of the mechanical stresses is critical to longitudinal growth of the long bones [13]. Later deformation and stimulation of growth plates may be responsible for its premature closing [16].
Perinatal brachial plexus lesion radically affects the development of upper limb. Finally, we observed a decrease of upper limb dimension in comparison with healthy side regardless of revival of motor function. Therefore, it is important to emphasize that perinatal brachial plexus lesion poses serious challenges to parents as well as to the child itself in its later stages of life. Birth of a child with perinatal brachial plexus palsy causes parents a considerable amount of stress amplified by realisation that the child was perfectly healthy up to the point of labour [17]. Their ordeal is often prolonged by uncertain prognosis, in particular because varying degrees of neural tissue lesion might lead to similar clinical symptoms. Only a prolonged clinical observation allows for differentiation between cases of perinatal brachial plexus palsy with good prognosis and injuries where surgical treatment is necessary [1, 2, 5–9]. With time, upper limb dysfunction comes to pose a major problem to a child itself [18]. For many young patients such visible disability is tantamount to numerous developmental and behavioural problems aggravated in cases of severe brachial plexus lesion [18].
There is a notable scarcity of research and relevant literature on the subject of disorders of upper limb development in perinatal brachial plexus palsy. In the last ten years, only three articles were published on the subject in English language journals [10, 12, 13]. Each of these studies have had a retrospective nature and analysed homogenous group of patients. McDaid et al. focus on 22 cases of children who underwent tendon transfers but not microsurgical reconstructions [12]. Bae et al. analysed 48 cases treated conservatively [10]. Finally, Terzis and Kokkalis’ examine cases of 54 children who underwent microsurgical treatment [13]. The last-mentioned authors do not compare their results with a control group of children (not treated surgically). This is also the case in this work as the great majority of children admitted to our clinic require surgical procedures.
Our work aims at expanding the knowledge on the disorders of upper limb development in perinatal brachial plexus palsy and a better understanding of the phenomena. However, since the available literature offers distinctive, and sometimes contrasting observations, we point out to a necessity for a multicentre researches of prospective character.