Kanis JA, on behalf of the World Health Organization Scientific Group: Assessment of osteoporosis at the primary health-care level. Technical Report. 2007, University of Sheffield, UK: World Health Organization Collaborating Centre for Metabolic Bone Diseases, 1-339. Printed by the University of Sheffield
Google Scholar
Johnell O, Kanis JA: An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006, 17: 1726-1733. 10.1007/s00198-006-0172-4.
Article
CAS
PubMed
Google Scholar
Kanis JA: Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 2002, 359: 1929-1936. 10.1016/S0140-6736(02)08761-5.
Article
PubMed
Google Scholar
Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A: Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007, 22: 465-475.
Article
PubMed
Google Scholar
Prevention of Osteoporosis.http://www.iofbonehealth.org/patients-public/about-osteoporosis/prevention.html,
National Osteoporosis Foundation: Prevention and Healthy Living. 2012, Washington, DC: National Osteoporosis Foundation
Google Scholar
Physical Activity Guidelines Advisory Committee: Physical Activity Guidelines Advisory Report. 2008, Washington, DC: U.S. Department of Health and Human Services
Google Scholar
Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR: American College of Sports Medicine Position Stand: physical activity and bone health. Med Sci Sports Exerc. 2004, 36: 1985-1996. 10.1249/01.MSS.0000142662.21767.58.
Article
PubMed
Google Scholar
Bassey EJ, Rothwell MC, Littlewood JJ, Pye DW: Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise. J Bone Miner Res. 1998, 13: 1805-1813. 10.1359/jbmr.1998.13.12.1805.
Article
CAS
PubMed
Google Scholar
Bergstrom I, Landgren B, Brinck J, Freyschuss B: Physical training preserves bone mineral density in postmenopausal women with forearm fractures and low bone mineral density. Osteoporos Int. 2008, 19: 177-183. 10.1007/s00198-007-0445-6.
Article
CAS
PubMed
Google Scholar
Bocalini DS, Serra AJ, Dos SL, Murad N, Levy RF: Strength training preserves the bone mineral density of postmenopausal women without hormone replacement therapy. J Aging Health. 2009, 21: 519-527. 10.1177/0898264309332839.
Article
PubMed
Google Scholar
Brentano MA, Cadore EL, da Silva EM, Ambrosini AB, Coertjens M, Petkowicz R, Viero I, Kruel LF: Physiological adaptations to strength and circuit training in postmenopausal women with bone loss. J Strength Cond Res. 2008, 22: 1816-1825. 10.1519/JSC.0b013e31817ae3f1.
Article
PubMed
Google Scholar
Brooke-Wavell KSF, Jones PRM, Hardman AE: Brisk walking reduces calcaneal bone loss in post-menopausal women. Clin Sci. 1997, 92: 75-80.
Article
CAS
PubMed
Google Scholar
Chilibeck PD, Davison KS, Whiting SJ, Suzuki Y, Janzen CL, Peloso P: The effect of strength training combined with bisphosphonate (etidronate) therapy on bone mineral, lean tissue, and fat mass in postmenopausal women. Can J Physiol Pharmacol. 2002, 80: 941-950. 10.1139/y02-126.
Article
CAS
PubMed
Google Scholar
Choquette S, Riesco E, Cormier E, Dion T, Aubertin-Leheudre M, Dionne IJ: Effects of soya isoflavones and exercise on body composition and clinical risk factors of cardiovascular diseases in overweight postmenopausal women: a 6-month double-blind controlled trial. Br J Nutr. 2011, 105: 1199-1209. 10.1017/S0007114510004897.
Article
PubMed
Google Scholar
Englund U, Littbrand H, Sondell A, Pettersson U, Bucht G: A 1-year combined weight-bearing training program is beneficial for bone mineral density and neuromuscular function in older women. Osteoporos Int. 2005, 16: 1117-1123. 10.1007/s00198-004-1821-0.
Article
PubMed
Google Scholar
Going S, Lohman T, Houtkooper L, Metcalfe L, Flint-Wagner H, Blew R, Stanford V, Cussler E, Martin J, Teixeira P: Effects of exercise on bone mineral density in calcium-replete postmenopausal women with and without hormone replacement therapy. Osteoporos Int. 2003, 14: 637-643. 10.1007/s00198-003-1436-x.
Article
CAS
PubMed
Google Scholar
Grove KA, Londeree BR: Bone density in postmenopausal women:high impact versus low impact exercise. Med Sci Sports Exerc. 1992, 24: 1190-1194.
Article
CAS
PubMed
Google Scholar
Hong WL: Tai Chi and resistance training exercise: would these really improve the health of the elderly?. PhD Thesis. 2004, The Chinese University of Hong Kong
Google Scholar
Iwamoto J, Takeda T, Ichimura S: Effect of exercise training and detraining on bone mineral density in postmenopausal women with osteoporosis. J Orthop Sci. 2001, 6: 128-132. 10.1007/s007760100059.
Article
CAS
PubMed
Google Scholar
Jessup JV, Horne C, Vishen RK, Wheeler D: Effects of exercise on bone density, balance, and self-efficacy in older women. Biol Res Nurs. 2003, 4: 171-180. 10.1177/1099800402239628.
Article
PubMed
Google Scholar
Kemmler W, von Stengel S, Engelke K, Haberle L, Kalender WA: Exercise effects on bone mineral density, falls, coronary risk factors, and health care costs in older women: the randomized controlled senior fitness and prevention (SEFIP) study. Arch Int Med. 2010, 170: 179-185. 10.1001/archinternmed.2009.499.
Article
Google Scholar
Kerr D, Morton A, Dick I, Prince R: Exercise effects on bone mass in postmenopausal women are site-specific and load-dependent. J Bone Miner Res. 1996, 11: 218-225.
Article
CAS
PubMed
Google Scholar
Kerr D, Ackland T, Maslen B, Morton A, Prince R: Resistance training over 2 years increases bone mass in calcium-replete postmenopausal women. J Bone Miner Res. 2001, 16: 175-181. 10.1359/jbmr.2001.16.1.175.
Article
CAS
PubMed
Google Scholar
Liu-Ambrose TYL, Khan KM, Eng JJ, Heinonen A, McKay HA: Both resistance and agility training increase cortical bone density in 75- to 85-year-old women with low bone mass: a 6-month randomized controlled trial. J Clin Densitom. 2004, 7: 390-398. 10.1385/JCD:7:4:390.
Article
PubMed
Google Scholar
Marques EA, Mota J, Machado L, Sousa F, Coelho M, Moreira P, Carvalho J: Multicomponent training program with weight-bearing exercises elicits favorable bone density, muscle strength, and balance adaptations in older women. Calcif Tissue Int. 2011, 88: 117-129. 10.1007/s00223-010-9437-1.
Article
CAS
PubMed
Google Scholar
Marques EA, Wanderley F, Machado L, Sousa F, Viana JL, Moreira-Goncalves D, Moreira P, Mota J, Carvalho J: Effects of resistance and aerobic exercise on physical function, bone mineral density, OPG and RANKL in older women. Exp Gerontol. 2011, 46: 524-532. 10.1016/j.exger.2011.02.005.
Article
CAS
PubMed
Google Scholar
Martin D, Notelovitz M: Effects of aerobic training on bone mineral density of postmenopausal women. J Bone Miner Res. 1993, 8: 931-936.
Article
CAS
PubMed
Google Scholar
Nelson ME, Fiatarone MA, Morganti CM, Trice I, Greenberg RA, Evans WJ: Effects of high-intensity strength training on multiple risk factors for osteoporotic fractures:a randomized controlled trial. JAMA. 1994, 272: 1909-1914. 10.1001/jama.1994.03520240037038.
Article
CAS
PubMed
Google Scholar
Newstead A, Smith KI, Bruder J, Keller C: The effect of a jumping exercise intervention on bone mineral density in postmenopausal women. J Geriatr Phys Ther. 2004, 27: 47-52. 10.1519/00139143-200408000-00002.
Article
Google Scholar
Prince R, Devine A, Criddle A, Kerr D, Kent N, Price R, Ranell A: The effects of calcium supplementation (milk powder or tablets) and exercise on bone density in postmenopausal women. J Bone Miner Res. 1995, 10: 1068-1075.
Article
CAS
PubMed
Google Scholar
Rhodes EC, Martin AD, Taunton JE, Donnelly M, Warren J, Elliot J: Effects of one year of resistance training on the relation between muscular strength and bone density in elderly women. Br J Sports Med. 2000, 34: 18-22. 10.1136/bjsm.34.1.18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu J, Oka J, Higuchi M, Tabata I, Toda T, Fujioka M, Fuku N, Teramoto T, Okuhira T, Ueno T: Cooperative effects of isoflavones and exercise on bone and lipid metabolism in postmenopausal Japanese women: a randomized placebo-controlled trial. Metabolism. 2006, 55: 423-433. 10.1016/j.metabol.2005.10.002.
Article
CAS
PubMed
Google Scholar
Hedges LV, Olkin I: Vote-counting methods in research synthesis. Psychol Bull. 1980, 88: 359-369.
Article
Google Scholar
Sacks HS, Berrier J, Reitman D, Ancona-Berk VA, Chalmers TC: Meta-analysis of randomized controlled trials. N Engl J Med. 1987, 316: 450-455. 10.1056/NEJM198702193160806.
Article
CAS
PubMed
Google Scholar
Berard A, Bravo G, Gauthier P: Meta-analysis of the effectiveness of physical activity for the prevention of bone loss in postmenopausal women. Osteoporos Int. 1997, 7: 331-337. 10.1007/BF01623773.
Article
CAS
PubMed
Google Scholar
Howe TE, Shea B, Dawson LJ, Downie F, Murray A, Ross C, Harbour RT, Caldwell LM, Creed G: Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev. 2011, 7: CD000333-
PubMed
Google Scholar
Kelley GA: Aerobic exercise and lumbar spine bone mineral density in postmenopausal women: a meta-analysis. J Am Geriatr Soc. 1998, 46: 143-152.
Article
CAS
PubMed
Google Scholar
Kelley GA: Exercise and regional bone mineral density in postmenopausal women: a meta-analytic review of randomized trials. Am J Phys Med Rehabil. 1998, 77: 76-87. 10.1097/00002060-199801000-00015.
Article
CAS
PubMed
Google Scholar
Kelley GA: Aerobic exercise and bone density at the hip in postmenopausal women: A meta-analysis. Prev Med. 1998, 27: 798-807. 10.1006/pmed.1998.0360.
Article
CAS
PubMed
Google Scholar
Kelley GA, Kelley KS, Tran ZV: Exercise and bone mineral density in men: a meta-analysis. J Appl Physiol. 2000, 88: 1730-1736.
CAS
PubMed
Google Scholar
Kelley GA, Kelley KS, Tran ZV: Resistance training and bone mineral density in women: a meta-analysis of controlled trials. Am J Phys Med Rehabil. 2001, 80: 65-77. 10.1097/00002060-200101000-00017.
Article
CAS
PubMed
Google Scholar
Kelley GA, Kelley KS, Tran ZV: Exercise and lumbar spine bone mineral density in postmenopausal women: a meta-analysis of individual patient data. J Gerontol: Med Sci. 2002, 57A: M599-M604.
Article
Google Scholar
Kelley GA, Kelley KS: Aerobic exercise and regional bone density in women: a meta-analysis of controlled trials. Am J Med Sports. 2002, 4: 427-433.
Google Scholar
Kelley GA, Kelley KS, Tran ZV: Efficacy of resistance exercise on lumbar spine and femoral neck bone mineral density in premenopausal women: a meta-analysis of individual patient data. J Womens Health. 2004, 13: 293-300. 10.1089/154099904323016455.
Article
Google Scholar
Kelley GA, Kelley KS: Exercise and bone mineral density at the femoral neck in postmenopausal women: a meta-analysis of controlled clinical trials with individual patient data. Am J Obstet Gynecol. 2006, 194: 760-767. 10.1016/j.ajog.2005.09.006.
Article
PubMed
Google Scholar
Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Int Med. 2009, 151: W65-W94.
Article
PubMed
Google Scholar
Marques EA, Mota J, Carvalho J: Exercise effects on bone mineral density in older adults: a meta-analysis of randomized controlled trials. Age (Dordr). 2011, 1-23.
Google Scholar
Martyn-St JM, Carroll S: High-intensity resistance training and postmenopausal bone loss: a meta-analysis. Osteoporos Int. 2006, 17: 1225-1240. 10.1007/s00198-006-0083-4.
Article
Google Scholar
Martyn-St JM, Carroll S: Meta-analysis of walking for preservation of bone mineral density in postmenopausal women. Bone. 2008, 43: 521-531. 10.1016/j.bone.2008.05.012.
Article
Google Scholar
Martyn-St JM, Carroll S: A meta-analysis of impact exercise on postmenopausal bone loss: the case for mixed loading exercise programmes. Br J Sports Med. 2009, 43: 898-908. 10.1136/bjsm.2008.052704.
Article
Google Scholar
Palombaro KM: Effects of walking-only interventions on bone mineral density at various skeletal sites: a meta-analysis. J Geriatr Phys Ther. 2005, 28: 102-107. 10.1519/00139143-200512000-00006.
Article
PubMed
Google Scholar
Wallace BA, Cumming RG: Systematic review of randomized trials of the effect of exercise on bone mass in pre- and postmenopausal women. Calcif Tissue Int. 2000, 67: 10-18. 10.1007/s00223001089.
Article
CAS
PubMed
Google Scholar
Wolff I, van Croonenborg JJ, Kemper HCG, Kostense PJ, Twisk JWR: The effect of exercise training programs on bone mass: a meta-analysis of published controlled trials in pre- and postmenopause women. Osteoporos Int. 1999, 9: 1-12. 10.1007/s001980050109.
Article
CAS
PubMed
Google Scholar
Snow CM, Matkin CC, Shaw JM: Physical Activity and risk for osteoporosis. Osteoporosis. Edited by: Marcus R, Feldman D, Kelsey J. 1996, San Diego: Academic Press, 511-528.
Google Scholar
Sinaki M: Exercise and osteoporosis. Arch Phys Med Rehabil. 1989, 70: 220-229.
CAS
PubMed
Google Scholar
Reference Manager: Reference Manager. 2009, Philadelphia, PA: Thompson ResearchSoft, version 12.0.1
Google Scholar
Microsoft Excel. 2007, Redmond: Microsoft Corporation, (2007)
Weeks BK, Beck BR: The BPAQ: a bone-specific physical activity assessment instrument. Osteoporos Int. 2008, 19: 1567-1577. 10.1007/s00198-008-0606-2.
Article
CAS
PubMed
Google Scholar
Cochrane handbook for systematic reviews of interventions (version 5.0.2).www.cochrane-handbook.org,
Ahn S, Becker BJ: Incorporating quality scores in meta-analysis. J Educ Behav Stat. 2011, 36: 555-585. 10.3102/1076998610393968.
Article
Google Scholar
Hedges LV, Olkin I: Statistical methods for meta-analysis. 1985, San Diego: Academic Press
Google Scholar
Follmann D, Elliot P, Suh I, Cutler J: Variance imputation for overviews of clinical trials with continuous response. J Clin Epidemiol. 1992, 45: 769-773. 10.1016/0895-4356(92)90054-Q.
Article
CAS
PubMed
Google Scholar
Dersimonian R, Laird N: Meta-analysis in clinical trials. Control Clin Trials. 1986, 7: 177-188. 10.1016/0197-2456(86)90046-2.
Article
CAS
PubMed
Google Scholar
Baim S, Binkley N, Bilezikian JP, Kendler DL, Hans DB, Lewiecki EM, Silverman S: Official positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD Position Development Conference. J Clin Densitom. 2008, 11: 75-91. 10.1016/j.jocd.2007.12.007.
Article
PubMed
Google Scholar
Cohen J: A power primer. Psychol Bull. 1992, 112: 155-159.
Article
CAS
PubMed
Google Scholar
Madsen MV, Gotzsche PC, Hrobjartsson A: Acupuncture treatment for pain: systematic review of randomised clinical trials with acupuncture, placebo acupuncture, and no acupuncture groups. Br Med J. 2009, 338: a3115-10.1136/bmj.a3115.
Article
Google Scholar
Kraemer HC, Kupfer DJ: Size of treatment effects and their importance to clinical research and practice. Biol Psychiatry. 2006, 59: 990-996. 10.1016/j.biopsych.2005.09.014.
Article
PubMed
Google Scholar
U.S.Census Bureau PD: Intercensal Estimates of the Resident Population by Sex and Age for the United States: April 1, 2000 to July 1, 2010 (US-EST00INT-01). 2011, Washington, DC: U.S.Census Bureau PD, 2-17-2012
Google Scholar
US Department of Health and Human Services: Healthy People 2020. 2012, Washington, DC: US Department of Health and Human Services
Google Scholar
Health Indicators Warehouse: Aerobic physical activity and muscle-strengthening activity among adults (percent). 2012, Hyattsville: National Center for Health Statistics, 2-16-2012
Google Scholar
Higgins JPT, Thompson SG, Deeks JJ, Altman DG: Measuring inconsistency in meta-analyses. Br Med J. 2003, 327: 557-560. 10.1136/bmj.327.7414.557.
Article
Google Scholar
Higgins JP, Thompson SG, Spiegelhalter DJ: A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A. 2009, 172: 137-159. 10.1111/j.1467-985X.2008.00552.x.
Article
Google Scholar
Kelley GA, Kelley KS: Impact of progressive resistance training on lipids and lipoproteins in adults: another look at a meta-analysis using prediction intervals. Prev Med. 2009, 49: 473-475. 10.1016/j.ypmed.2009.09.018.
Article
CAS
PubMed
Google Scholar
Duval S, Tweedie R: Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000, 56: 455-463. 10.1111/j.0006-341X.2000.00455.x.
Article
CAS
PubMed
Google Scholar
Lau J, Schmid CH, Chalmers TC: Cumulative meta-analysis of clinical trials builds evidence for exemplary medical care: the Potsdam International Consultation on Meta-Analysis. J Clin Epidemiol. 1995, 48: 45-57. 10.1016/0895-4356(94)00106-Z.
Article
CAS
PubMed
Google Scholar
Borenstein M, Hedges L, Higgins J, Rothstein H: Introduction to meta-analysis. 2009, West Sussex: John Wiley & Sons
Book
Google Scholar
Littell JH, Corcoran J, Pillai V: Systematic reviews and meta-analysis. 2008, New York: Oxford University Press
Book
Google Scholar
Engels EA, Schmid CH, Terrin N, Olkin I, Lau J: Heterogeneity and statistical significance in meta-analysis: an empirical study of 125 meta-analyses. Stat Med. 2000, 19: 1707-1728. 10.1002/1097-0258(20000715)19:13<1707::AID-SIM491>3.0.CO;2-P.
Article
CAS
PubMed
Google Scholar
Glass GV, McGaw B, Smith ML: Meta-analysis in social research. 1981, Newbury Park: Sage
Google Scholar
Melton LJ, Crowson CS, O'Fallon WM, Wahner HW, Riggs BL: Relative contributions of bone density, bone turnover, and clinical risk factors to long-term fracture prediction. J Bone Miner Res. 2003, 18: 312-318. 10.1359/jbmr.2003.18.2.312.
Article
PubMed
Google Scholar
Cranney A, Guyatt G, Griffith L, Wells G, Tugwell P, Rosen C, tOMG, and the Osteoporosis Research Advisory Group: IX: Summary of meta-analyses of therapies for postmenopausal osteoporosis. Endocr Rev. 2002, 23: 570-578. 10.1210/er.2001-9002.
Article
CAS
PubMed
Google Scholar
MacLean C, Newberry S, Maglione M, McMahon M, Ranganath V, Suttorp M, Mojica W, Timmer M, Alexander A, McNamara M: Systematic review: comparative effectiveness of treatments to prevent fractures in men and women with low bone density or osteoporosis. Ann Int Med. 2008, 148: 197-213.
Article
PubMed
Google Scholar
Pedersen BK, Saltin B: Evidence for prescribing exercise as therapy in chronic disease. Scand J Med Sci Sports. 2006, 16: 3-63. 10.1111/j.1600-0838.2006.00520.x.
Article
PubMed
Google Scholar
Sherrington C, Tiedemann A, Fairhall N, Close JC, Lord SR: Exercise to prevent falls in older adults: an updated meta-analysis and best practice recommendations. N S W Public Health Bull. 2011, 22: 78-83. 10.1071/NB10056.
Article
PubMed
Google Scholar
Sterne JA, Davey SG: Sifting the evidence-what's wrong with significance tests?. Br Med J. 2001, 322: 226-231. 10.1136/bmj.322.7280.226.
Article
CAS
Google Scholar
Barry DW, Kohrt WM: BMD decreases over the course of a year in competitive male cyclists. J Bone Miner Res. 2008, 23: 484-491.
Article
CAS
PubMed
Google Scholar
Barry DW, Kohrt WM: Acute effects of 2 hours of moderate-intensity cycling on serum parathyroid hormone and calcium. Calcif Tissue Int. 2007, 80: 359-365. 10.1007/s00223-007-9028-y.
Article
CAS
PubMed
Google Scholar
Rothman KJ: No adjustments are needed for multiple comparisons. Epidemiol. 1990, 1: 43-46. 10.1097/00001648-199001000-00010.
Article
CAS
Google Scholar
Bennett JA, Winters-Stone K, Nail LM, Scherer J: Definitions of sedentary in physical-activity-intervention trials: a summary of the literature. J Aging Phys Act. 2006, 14: 456-477.
PubMed
Google Scholar
Liu XS, Stein EM, Zhou B, Zhang CA, Nickolas TL, Cohen A, Thomas V, McMahon DJ, Cosman F, Nieves J: Individual trabecula segmentation (ITS)-based morphological analyses and microfinite element analysis of HR-pQCT images discriminate postmenopausal fragility fractures independent of DXA measurements. J Bone Miner Res. 2012, 27: 263-272. 10.1002/jbmr.562.
Article
PubMed
PubMed Central
Google Scholar