Cadosch D, Gautschi OP, Thyer M, Song S, Skirving AP, Filgueira L, et al. Humoral factors enhance fracture-healing and callus formation in patients with traumatic brain injury. J Bone Joint Surg Am. 2009;91(2):282–8. https://doi.org/10.2106/JBJS.G.01613.
Article
Google Scholar
Giannoudis PV, Mushtaq S, Harwood P, Kambhampati S, Dimoutsos M, Stavrou Z, et al. Accelerated bone healing and excessive callus formation in patients with femoral fracture and head injury. Injury. 2006;37(Suppl 3):S18–24. https://doi.org/10.1016/j.injury.2006.08.020.
Article
Google Scholar
Yang TY, Wang TC, Tsai YH, Huang KC. The effects of an injury to the brain on bone healing and callus formation in young adults with fractures of the femoral shaft. J Bone Joint Surg Br. 2012;94(2):227–30. https://doi.org/10.1302/0301-620X.94B2.28193.
Article
Google Scholar
Hofman M, Koopmans G, Kobbe P, Poeze M, Andruszkow H, Brink PR, et al. Improved fracture healing in patients with concomitant traumatic brain injury: proven or not? Mediat Inflamm. 2015;2015:204842. https://doi.org/10.1155/2015/204842.
Article
Google Scholar
Morley J, Marsh S, Drakoulakis E, Pape HC, Giannoudis PV. Does traumatic brain injury result in accelerated fracture healing? Injury. 2005;36(3):363–8. https://doi.org/10.1016/j.injury.2004.08.028.
Article
Google Scholar
Huang H, Cheng WX, Hu YP, Chen JH, Zheng ZT, Zhang P. Relationship between heterotopic ossification and traumatic brain injury: why severe traumatic brain injury increases the risk of heterotopic ossification. J Orthop Translat. 2018;12:16–25. https://doi.org/10.1016/j.jot.2017.10.002.
Article
Google Scholar
Hellwinkel JE, Miclau T 3rd, Provencher MT, Bahney CS, Working ZM. The life of a fracture: biologic progression, healing gone awry, and evaluation of union. JBJS Rev. 2020;8(8):e1900221. https://doi.org/10.2106/JBJS.RVW.19.00221.
Article
Google Scholar
Citak C, Kayali C, Ozan F, Altay T, Karahan HG, Yamak K. Lateral locked plating or dual plating: a comparison of two methods in simple Bicondylar Tibial plateau fractures. Clin Orthop Surg. 2019;11(2):151–8. https://doi.org/10.4055/cios.2019.11.2.151.
Article
Google Scholar
Shim DW, Choi E, Park YC, Shin SC, Lee JW, Sung SY. Comparing bilateral feet computed tomography scans can improve surgical decision making for subtle Lisfranc injury. Arch Orthop Trauma Surg. 2021. https://doi.org/10.1007/s00402-021-04182-7.
Bolander ME. Regulation of fracture repair by growth factors. Proc Soc Exp Biol Med. 1992;200(2):165–70. https://doi.org/10.3181/00379727-200-43410a.
Article
CAS
Google Scholar
Loi F, Cordova LA, Pajarinen J, Lin TH, Yao Z, Goodman SB. Inflammation, fracture and bone repair. Bone. 2016;86:119–30. https://doi.org/10.1016/j.bone.2016.02.020.
Article
CAS
Google Scholar
Baht GS, Vi L, Alman BA. The role of the immune cells in fracture healing. Curr Osteoporos Rep. 2018;16(2):138–45. https://doi.org/10.1007/s11914-018-0423-2.
Article
Google Scholar
Morioka K, Marmor Y, Sacramento JA, Lin A, Shao T, Miclau KR, et al. Differential fracture response to traumatic brain injury suggests dominance of neuroinflammatory response in polytrauma. Sci Rep. 2019;9(1):12199. https://doi.org/10.1038/s41598-019-48126-z.
Article
CAS
Google Scholar
Marshall LF, Marshall SB, Klauber MR, Van Berkum CM, Eisenberg H, Jane JA, et al. The diagnosis of head injury requires a classification based on computed axial tomography. J Neurotrauma. 1992;9(Suppl 1):S287–92.
Google Scholar
Spencer RF. The effect of head injury on fracture healing. A quantitative assessment. J Bone Joint Surg Br. 1987;69(4):525–8. https://doi.org/10.1302/0301-620X.69B4.3611151.
Article
CAS
Google Scholar
Eschler A, Roepenack P, Herlyn PK, Roesner J, Martin H, Vollmar B, et al. Intrabody application of eptotermin alpha enhances bone formation in osteoporotic fractures of the lumbar spine; however, fails to increase biomechanical stability - results of an experimental sheep model. Growth Factors. 2015;33(4):290–7. https://doi.org/10.3109/08977194.2015.1077827.
Article
CAS
Google Scholar
Ciosek Ż, Kot K, Kosik-Bogacka D, Łanocha-Arendarczyk N, Rotter I. The effects of calcium, magnesium, phosphorus, fluoride, and Lead on bone tissue. Biomolecules. 2021;11(4). https://doi.org/10.3390/biom11040506.
Anaraki N, Beyraghi AH, Raisi A, Davoodi F, Farjanikish G, Sadegh AB. The effect of aqueous extract of Prunus dulcis on tibial bone healing in the rabbit. J Orthop Surg Res. 2021;16(1):362. https://doi.org/10.1186/s13018-021-02498-z.
Article
Google Scholar
Chen Z, Xie L, Xu J, Lin X, Ye J, Shao R, et al. Changes in alkaline phosphatase, calcium, C-reactive protein, D-dimer, phosphorus and hemoglobin in elderly osteoporotic hip fracture patients. Ann. Palliat Med. 2021;10(2):1079–88. https://doi.org/10.21037/apm-20-218.
Article
Google Scholar
Kiran DN, Desai R. Estimation of C-reactive protein associated with mandibular fracture. J Maxillofac Oral Surg. 2012;11(1):67–71. https://doi.org/10.1007/s12663-011-0278-x.
Article
CAS
Google Scholar
Rovai AP, Baker JD, Ponton MK. Social science research design and statistics: a practitioner's guide to research methods and IBM SPSS. Virginia: Watertree Press LLC; 2013.
Altman DG. Practical statistics for medical research. London and New York: Chapman and Hall; 1991.
Garland DE, Toder L. Fractures of the tibial diaphysis in adults with head injuries. Clin Orthop Relat Res. 1980;150:198–202.
Article
Google Scholar
Gautschi OP, Cadosch D, Frey SP, Skirving AP, Filgueira L, Zellweger R. Serum-mediated osteogenic effect in traumatic brain-injured patients. ANZ J Surg. 2009;79(6):449–55. https://doi.org/10.1111/j.1445-2197.2008.04803.x.
Article
Google Scholar
Huang W, Li Z, Li Z, Yang R. Does traumatic brain injury result in accelerated mandibular fracture healing? J Oral Maxillofac Surg. 2012;70(9):2135–42. https://doi.org/10.1016/j.joms.2012.04.016.
Article
Google Scholar
Kolar P, Schmidt-Bleek K, Schell H, Gaber T, Toben D, Schmidmaier G, et al. The early fracture hematoma and its potential role in fracture healing. Tissue Eng Part B Rev. 2010;16(4):427–34. https://doi.org/10.1089/ten.TEB.2009.0687.
Article
Google Scholar
Javed Z, Qamar U, Sathyapalan T. Pituitary and/or hypothalamic dysfunction following moderate to severe traumatic brain injury: current perspectives. Indian J Endocrinol Metab. 2015;19(6):753–63. https://doi.org/10.4103/2230-8210.167561.
Article
CAS
Google Scholar
Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100(2):197–207. https://doi.org/10.1016/s0092-8674(00)81558-5.
Article
CAS
Google Scholar
Hamrick MW, Pennington C, Newton D, Xie D, Isales C. Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone. 2004;34(3):376–83. https://doi.org/10.1016/j.bone.2003.11.020.
Article
CAS
Google Scholar
Wei Y, Wang L, Clark JC, Dass CR, Choong PF. Elevated leptin expression in a rat model of fracture and traumatic brain injury. J Pharm Pharmacol. 2008;60(12):1667–72. https://doi.org/10.1211/jpp/60.12.0013.
Article
CAS
Google Scholar
Yan H, Zhang HW, Fu P, Liu BL, Jin WZ, Duan SB, et al. Leptin's effect on accelerated fracture healing after traumatic brain injury. Neurol Res. 2013;35(5):537–44. https://doi.org/10.1179/1743132813Y.0000000201.
Article
CAS
Google Scholar
Seemann R, Graef F, Garbe A, Keller J, Huang F, Duda G, et al. Leptin-deficiency eradicates the positive effect of traumatic brain injury on bone healing: histological analyses in a combined trauma mouse model. J Musculoskelet Neuronal Interact. 2018;18(1):32–41.
CAS
Google Scholar
Garbe A, Graef F, Appelt J, Schmidt-Bleek K, Jahn D, Lunnemann T, et al. Leptin mediated pathways stabilize posttraumatic insulin and Osteocalcin patterns after long bone fracture and concomitant traumatic brain injury and thus influence fracture healing in a combined murine trauma model. Int J Mol Sci. 2020;21(23). https://doi.org/10.3390/ijms21239144.
Wildburger R, Zarkovic N, Tonkovic G, Skoric T, Frech S, Hartleb M, et al. Post-traumatic hormonal disturbances: prolactin as a link between head injury and enhanced osteogenesis. J Endocrinol Investig. 1998;21(2):78–86. https://doi.org/10.1007/BF03350319.
Article
CAS
Google Scholar
Zhang D, Zhang P, Wang Y, Han N, Tang C, Jiang B. The influence of brain injury or peripheral nerve injury on calcitonin gene-related peptide concentration variation and fractures healing process. Artif Cells Blood Substit Immobil Biotechnol. 2009;37(2):85–91. https://doi.org/10.1080/10731190902743149.
Article
CAS
Google Scholar
Zhang JY, Yan GT, Liao J, Deng ZH, Xue H, Wang LH, et al. Leptin attenuates cerebral ischemia/reperfusion injury partially by CGRP expression. Eur J Pharmacol. 2011;671(1–3):61–9. https://doi.org/10.1016/j.ejphar.2011.09.170.
Article
CAS
Google Scholar
Song Y, Bi L, Zhang Z, Huang Z, Hou W, Lu X, et al. Increased levels of calcitonin gene-related peptide in serum accelerate fracture healing following traumatic brain injury. Mol Med Rep. 2012;5(2):432–8. https://doi.org/10.3892/mmr.2011.645.
Article
CAS
Google Scholar
Clark D, Nakamura M, Miclau T, Marcucio R. Effects of aging on fracture healing. Curr Osteoporos Rep. 2017;15(6):601–8. https://doi.org/10.1007/s11914-017-0413-9.
Article
Google Scholar
Shiu HT, Leung PC, Ko CH. The roles of cellular and molecular components of a hematoma at early stage of bone healing. J Tissue Eng Regen Med. 2018;12(4):e1911–e25. https://doi.org/10.1002/term.2622.
Article
CAS
Google Scholar
Whelan DB, Bhandari M, Stephen D, Kreder H, McKee MD, Zdero R, et al. Development of the radiographic union score for tibial fractures for the assessment of tibial fracture healing after intramedullary fixation. J Trauma. 2010;68(3):629–32. https://doi.org/10.1097/TA.0b013e3181a7c16d.
Article
Google Scholar