Tarantino U, Cariati I, Tancredi V, Casamassima D, Piccirilli E, Iundusi R, Gasbarra E. State of Fragility Fractures Management during the COVID-19 Pandemic. Int J Environ Res Public Health. 2020;17(21):7732.
Nuti R, Brandi ML, Checchia G, Di Munno O, Dominguez L, Falaschi P, et al. Guidelines for the management of osteoporosis and fragility fractures. Intern Emerg Med. 2019;14:85–102.
Article
PubMed
Google Scholar
Tarantino U, Iolascon G, Cianferotti L, Masi L, Marcucci G, Giusti F, et al. Clinical guidelines for the prevention and treatment of osteoporosis: summary statements and recommendations from the italian society for Orthopaedics and Traumatology. J Orthop Traumatol Off J Ital Soc Orthop Traumatol. 2017;18(Suppl 1):3–36.
Article
Google Scholar
Duque G, Troen BR. Understanding the mechanisms of senile osteoporosis: new facts for a major geriatric syndrome. J Am Geriatr Soc. 2008;56:935–41.
Article
PubMed
Google Scholar
Armas LAG, Recker RR. Pathophysiology of osteoporosis: new mechanistic insights. Endocrinol Metab Clin North Am. 2012;41:475–86.
Article
CAS
PubMed
Google Scholar
Bouxsein ML. Bone quality: where do we go from here? Osteoporos Int a J establ as result coop between. Eur Found Osteoporos Natl Osteoporos Found USA. 2003;14(Suppl 5):118–27.
Google Scholar
Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet (London England). 2002;359:1761–7.
Article
PubMed
Google Scholar
Bonewald LF. The amazing osteocyte. J bone Miner Res Off J Am Soc Bone Miner Res. 2011;26:229–38.
Article
CAS
Google Scholar
Carpentier VT, Wong J, Yeap Y, Gan C, Sutton-Smith P, Badiei A, et al. Increased proportion of hypermineralized osteocyte lacunae in osteoporotic and osteoarthritic human trabecular bone: implications for bone remodeling. Bone. 2012;50:688–94.
Article
PubMed
Google Scholar
Dempster DW. Bone microarchitecture and strength. Osteoporos Int a J establ as result coop between. Eur Found Osteoporos Natl Osteoporos Found USA. 2003;14(Suppl 5):54–6.
Google Scholar
Burr D. Microdamage and bone strength. Osteoporos Int a J establ as result coop between. Eur Found Osteoporos Natl Osteoporos Found USA. 2003;14(Suppl 5):67–72.
Article
Google Scholar
Garnero P. The contribution of collagen crosslinks to bone strength. Bonekey Rep. 2012;1:182.
Article
PubMed
PubMed Central
Google Scholar
Benz D, Tarrant SM, Balogh ZJ. Proximal femur fracture non-union with or without implant failure: a revision technique with clinical outcomes. Injury. 2020;51:1925–30.
Article
PubMed
Google Scholar
Ghermandi R, Pipola V, Colangeli S, Parchi P, Andreani L, Capanna R, et al. Polymethylmethacrylate-augmented fenestreted pedicle-screw fixation in low bone quality patients: a case series and literature review. J Biol Regul Homeost Agents. 2018;32(6 Suppl):71–6.
CAS
PubMed
Google Scholar
Goodnough LH, Wadhwa H, Tigchelaar SS, DeBaun MR, Chen MJ, Graves ML, Gardner MJ. Indications for cement augmentation in fixation of geriatric intertrochanteric femur fractures: a systematic review of evidence. Arch Orthop Trauma Surg. 2022;142(10):2533–44.
Moroni A, Hoang-Kim A, Lio V, Giannini S. Current augmentation fixation techniques for the osteoporotic patient. Scand J Surg SJS Off organ Finnish Surg Soc Scand Surg Soc. 2006;95:103–9.
CAS
Google Scholar
Ishak B, Bajwa AA, Schneider T, Tubbs RS, Iwanaga J, Ramey WL, et al. Early complications and cement leakage in elderly patients who have undergone intraoperative computed tomography (CT)-Guided cement augmented pedicle screw placement: eight-year single-center experience. World Neurosurg. 2019;128:e975-81.
Article
PubMed
Google Scholar
Schuetze K, Eickhoff A, Röderer G, Gebhard F, Richter PH. Osteoporotic bone: when and how to use augmentation? J Orthop Trauma. 2019;33(Suppl 8):21–6.
Article
Google Scholar
Schuetze K, Ehinger S, Eickhoff A, Dehner C, Gebhard F, Richter PH. Cement augmentation of the proximal femur nail antirotation: is it safe? Arch Orthop Trauma Surg. 2021;141:803–11.
Article
PubMed
Google Scholar
Goodnough LH, Wadhwa H, Tigchelaar SS, DeBaun MR, Chen MJ, Bishop JA, et al. Trochanteric fixation nail advanced with helical blade and cement augmentation: early experience with a retrospective cohort. Eur J Orthop Surg Traumatol. 2021;31:259–64.
Article
PubMed
Google Scholar
Rompen IF, Knobe M, Link B-C, Beeres FJP, Baumgaertner R, Diwersi N, et al. Cement augmentation for trochanteric femur fractures: a meta-analysis of randomized clinical trials and observational studies. PLoS ONE. 2021;16:e0251894.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piccirilli E, Oliva F, Murè MA, Mahmoud A, Foti C, Tarantino U, et al. Viscosupplementation with intra-articular hyaluronic acid for hip disorders. A systematic review and meta-analysis. Muscles Ligaments Tendons J. 2016;6:293–9.
Article
PubMed
PubMed Central
Google Scholar
Egol KA, Sugi MT, Ong CC, Montero N, Davidovitch R, Zuckerman JD. Fracture site augmentation with calcium phosphate cement reduces screw penetration after open reduction-internal fixation of proximal humeral fractures. J Shoulder Elb Surg. 2012;21:741–8.
Article
Google Scholar
Kwon BK, Goertzen DJ, O’Brien PJ, Broekhuyse HM, Oxland TR. Biomechanical evaluation of proximal humeral fracture fixation supplemented with calcium phosphate cement. J Bone Joint Surg Am. 2002;84:951–61.
Article
PubMed
Google Scholar
Unger S, Erhart S, Kralinger F, Blauth M, Schmoelz W. The effect of in situ augmentation on implant anchorage in proximal humeral head fractures. Injury. 2012;43:1759–63.
Article
PubMed
Google Scholar
Röderer G, Scola A, Schmölz W, Gebhard F, Windolf M, Hofmann-Fliri L. Biomechanical in vitro assessment of screw augmentation in locked plating of proximal humerus fractures. Injury. 2013;44:1327–32.
Article
PubMed
Google Scholar
Veronese N, Maggi S. Epidemiology and social costs of hip fracture. Injury. 2018;49:1458–60.
Article
PubMed
Google Scholar
Friedman SM, Mendelson DA. Epidemiology of fragility fractures. Clin Geriatr Med. 2014;30:175–81.
Article
PubMed
Google Scholar
Kammerlander C, Erhart S, Doshi H, Gosch M, Blauth M. Principles of osteoporotic fracture treatment. Best Pract Res Clin Rheumatol. 2013;27:757–69.
Article
CAS
PubMed
Google Scholar
Pastor T, Zderic I, Gehweiler D, Gardner MJ, Stoffel K, Richards G, et al. Biomechanical analysis of recently released cephalomedullary nails for trochanteric femoral fracture fixation in a human cadaveric model. Arch Orthop Trauma Surg. 2021.
Oberkircher L, Masaeli A, Hack J, Figiel J, Bliemel C, Ruchholtz S, et al. Pull-out strength evaluation of cement augmented iliac screws in osteoporotic spino-pelvic fixation. Orthop Traumatol Surg Res. 2021;107:102945.
Article
PubMed
Google Scholar
Pesce V, Maccagnano G, Vicenti G, Notarnicola A, Moretti L, Tafuri S, et al. The effect of hydroxyapatite coated screw in the lateral fragility fractures of the femur. A prospective randomized clinical study. J Biol Regul Homeost Agents. 2014;28:125–32.
CAS
PubMed
Google Scholar
Mattsson P, Alberts A, Dahlberg G, Sohlman M, Hyldahl HC, Larsson S. Resorbable cement for the augmentation of internally-fixed unstable trochanteric fractures. A prospective, randomised multicentre study. J Bone Joint Surg Br. 2005;87:1203–9.
Article
CAS
PubMed
Google Scholar
Gupta RK, Gupta V, Gupta N. Outcomes of osteoporotic trochanteric fractures treated with cement-augmented dynamic hip screw. Indian J Orthop. 2012;46:640–5.
Article
PubMed
PubMed Central
Google Scholar
Neuerburg C, Mehaffey S, Gosch M, Böcker W, Blauth M, Kammerlander C. Trochanteric fragility fractures: treatment using the cement-augmented proximal femoral nail antirotation. Oper Orthop Traumatol. 2016;28:164–76.
Article
CAS
PubMed
Google Scholar
Keppler AM, Pfeufer D, Kau F, Linhart C, Zeckey C, Neuerburg C, et al. Cement augmentation of the proximal femur nail antirotation (PFNA) is associated with enhanced weight-bearing in older adults. Injury. 2021;52:3042–6.
Article
PubMed
Google Scholar
Sermon A, Zderic I, Khatchadourian R, Scherrer S, Knobe M, Stoffel K, et al. Bone cement augmentation of femoral nail head elements increases their cut-out resistance in poor bone quality- A biomechanical study. J Biomech. 2021;118:110301.
Article
PubMed
Google Scholar
Lobo-Escolar A, Joven E, Iglesias D, Herrera A. Predictive factors for cutting-out in femoral intramedullary nailing. Injury. 2010;41:1312–6.
Article
PubMed
Google Scholar
Kammerlander C, Gebhard F, Meier C, Lenich A, Linhart W, Clasbrummel B, et al. Standardised cement augmentation of the PFNA using a perforated blade: a new technique and preliminary clinical results. A prospective multicentre trial. Injury. 2011;42:1484–90.
Article
CAS
PubMed
Google Scholar
Biyani A, Reddy NS, Chaudhury J, Simison AJ, Klenerman L. The results of surgical management of displaced tibial plateau fractures in the elderly. Injury. 1995;26:291–7.
Article
CAS
PubMed
Google Scholar
Blokker CP, Rorabeck CH, Bourne RB. Tibial plateau fractures. An analysis of the results of treatment in 60 patients. Clin Orthop Relat Res. 1984;(182):193–9.
Schatzker J, McBroom R, Bruce D. The tibial plateau fracture. The Toronto experience 1968–1975. Clin Orthop Relat Res. 1979:94–104.
Bucholz RW, Carlton A, Holmes R. Interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures. Clin Orthop Relat Res. 1989:53–62.
Iundusi R, Gasbarra E, D’Arienzo M, Piccioli A, Tarantino U. Augmentation of tibial plateau fractures with an injectable bone substitute: CERAMENT™. Three year follow-up from a prospective study. BMC Musculoskelet Disord. 2015;16:115.
Article
PubMed
PubMed Central
Google Scholar
Russell TA, Leighton RK. Comparison of autogenous bone graft and endothermic calcium phosphate cement for defect augmentation in tibial plateau fractures. A multicenter, prospective, randomized study. J Bone Joint Surg Am. 2008;90:2057–61.
Article
PubMed
Google Scholar
McDonald E, Chu T, Tufaga M, Marmor M, Singh R, Yetkinler D, et al. Tibial plateau fracture repairs augmented with calcium phosphate cement have higher in situ fatigue strength than those with autograft. J Orthop Trauma. 2011;25:90–5.
Article
PubMed
Google Scholar
Kanno H, Aizawa T, Hashimoto K, Itoi E. Novel augmentation technique of percutaneous pedicle screw fixation using hydroxyapatite granules in the osteoporotic lumbar spine: a cadaveric biomechanical analysis. Eur spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. 2021;30:71–8.
Article
Google Scholar
Martinčič D, Brojan M, Kosel F, Štern D, Vrtovec T, Antolič V, et al. Minimum cement volume for vertebroplasty. Int Orthop. 2015;39:727–33.
Article
PubMed
Google Scholar
Andresen R, Radmer S, Andresen JR, Schober H-C. Comparison of the 18-month outcome after the treatment of osteoporotic insufficiency fractures by means of balloon sacroplasty (BSP) and radiofrequency sacroplasty (RFS) in comparison: a prospective randomised study. Eur spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. 2017;26:3235–40.
Article
Google Scholar
Bonaldi G, Bertolini G, Marrocu A, Cianfoni A. Posterior vertebral arch cement augmentation (spinoplasty) to prevent fracture of spinous processes after interspinous spacer implant. AJNR Am J Neuroradiol. 2012;33:522–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grechenig S, Gänsslen A, Gueorguiev B, Berner A, Müller M, Nerlich M, et al. PMMA-augmented SI screw: a biomechanical analysis of stiffness and pull-out force in a matched paired human cadaveric model. Injury. 2015;46(Suppl 4):125–8.
Google Scholar
Hopf JC, Krieglstein CF, Müller LP, Koslowsky TC. Percutaneous iliosacral screw fixation after osteoporotic posterior ring fractures of the pelvis reduces pain significantly in elderly patients. Injury. 2015;46:1631–6.
Article
PubMed
Google Scholar
Osterhoff G, Dodd AE, Unno F, Wong A, Amiri S, Lefaivre KA, et al. Cement augmentation in sacroiliac screw fixation offers modest biomechanical advantages in a cadaver model. Clin Orthop Relat Res. 2016;474:2522–30.
Article
PubMed
PubMed Central
Google Scholar
Schmitz P, Baumann F, Grechenig S, Gaensslen A, Nerlich M, Müller MB. The cement-augmented transiliacal internal fixator (caTIFI): an innovative surgical technique for stabilization of fragility fractures of the pelvis. Injury. 2015;46(Suppl 4):114–20.
Google Scholar