Ensrud KE, Crandall CJ. Osteoporosis. Ann Intern Med. 2017;167(3):Itc17-32.
Article
PubMed
Google Scholar
Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet (London, England). 2019;393(10191):2636–46.
Article
PubMed
Google Scholar
He C, He W, Hou J, Chen K, Huang M, Yang M, Luo X, Li C. Bone and muscle crosstalk in aging. Front Cell Dev Biol. 2020;8: 585644.
Article
PubMed
PubMed Central
Google Scholar
Brotto M, Johnson ML. Endocrine crosstalk between muscle and bone. Curr Osteoporos Rep. 2014;12(2):135–41.
Article
PubMed
PubMed Central
Google Scholar
Karsenty G, Mera P. Molecular bases of the crosstalk between bone and muscle. Bone. 2018;115:43–9.
Article
CAS
PubMed
Google Scholar
Reim NS, Breig B, Stahr K, Eberle J, Hoeflich A, Wolf E, Erben RG. Cortical bone loss in androgen-deficient aged male rats is mainly caused by increased endocortical bone remodeling. J Bone Miner Res. 2008;23(5):694–704.
Article
CAS
PubMed
Google Scholar
Gunness M, Orwoll E. Early induction of alterations in cancellous and cortical bone histology after orchiectomy in mature rats. J Bone Miner Res. 1995;10(11):1735–44.
Article
CAS
PubMed
Google Scholar
Carson JA, Manolagas SC. Effects of sex steroids on bones and muscles: Similarities, parallels, and putative interactions in health and disease. Bone. 2015;80:67–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wakley GK, Schutte HD Jr, Hannon KS, Turner RT. Androgen treatment prevents loss of cancellous bone in the orchidectomized rat. J Bone Miner Res. 1991;6(4):325–30.
Article
CAS
PubMed
Google Scholar
Vidal O, Lindberg MK, Hollberg K, Baylink DJ, Andersson G, Lubahn DB, Mohan S, Gustafsson JA, Ohlsson C. Estrogen receptor specificity in the regulation of skeletal growth and maturation in male mice. Proc Natl Acad Sci USA. 2000;97(10):5474–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Almeida M, Laurent MR, Dubois V, Claessens F, O’Brien CA, Bouillon R, Vanderschueren D, Manolagas SC. Estrogens and androgens in skeletal physiology and pathophysiology. Physiol Rev. 2017;97(1):135–87.
Article
PubMed
Google Scholar
Cariati I, Bonanni R, Onorato F, Mastrogregori A, Rossi D, Iundusi R, Gasbarra E, Tancredi V, Tarantino U. Role of physical activity in bone-muscle crosstalk: biological aspects and clinical implications. Journal of functional morphology and kinesiology. 2021;6(2):55.
Article
PubMed
PubMed Central
Google Scholar
Kawao N, Kaji H. Interactions between muscle tissues and bone metabolism. J Cell Biochem. 2015;116(5):687–95.
Article
CAS
PubMed
Google Scholar
Huang J, Romero-Suarez S, Lara N, Mo C, Kaja S, Brotto L, Dallas SL, Johnson ML, Jähn K, Bonewald LF, et al. Crosstalk between MLO-Y4 osteocytes and C2C12 muscle cells is mediated by the Wnt/β-catenin pathway. JBMR plus. 2017;1(2):86–100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Urano T, Shiraki M, Ouchi Y, Inoue S. Association of circulating sclerostin levels with fat mass and metabolic disease–related markers in Japanese postmenopausal women. J Clin Endocrinol Metab. 2012;97(8):E1473-1477.
Article
CAS
PubMed
Google Scholar
Shen S, Liao Q, Chen X, Peng C, Lin L. The role of irisin in metabolic flexibility: beyond adipose tissue browning. Drug Discovery Today. 2022;27(8):2261–7.
Article
CAS
PubMed
Google Scholar
Colaianni G, Mongelli T, Colucci S, Cinti S, Grano M. Crosstalk between muscle and bone via the muscle-Myokine Irisin. Curr Osteoporos Rep. 2016;14(4):132–7.
Article
CAS
PubMed
Google Scholar
Colaianni G, Cinti S, Colucci S, Grano M. Irisin and musculoskeletal health. Ann N Y Acad Sci. 2017;1402(1):5–9.
Article
CAS
PubMed
Google Scholar
Qiao X, Nie Y, Ma Y, Chen Y, Cheng R, Yin W, Hu Y, Xu W, Xu L. Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways. Sci Rep. 2016;6:18732.
Article
CAS
PubMed
Google Scholar
Colaianni G, Cuscito C, Mongelli T, Oranger A, Mori G, Brunetti G, Colucci S, Cinti S, Grano M. Irisin enhances osteoblast differentiation in vitro. Int J Endocrinol. 2014;2014: 902186.
Article
PubMed
PubMed Central
Google Scholar
Besschetnova T, Brooks DJ, Hu D, Nagano K, Nustad J, Ominsky M, Mitlak B, Hattersley G, Bouxsein ML, Baron R, et al. Abaloparatide improves cortical geometry and trabecular microarchitecture and increases vertebral and femoral neck strength in a rat model of male osteoporosis. Bone. 2019;124:148–57.
Article
CAS
PubMed
Google Scholar
Zhou BN, Hu J, Sun L, Wang O, Jiang Y, Xia WB, Xing XP, Li M. Effects of bisphosphonates on bone of osteoporotic men with different androgen levels: a case-control study. Endocr Pract. 2022;28(3):250–6.
Article
PubMed
Google Scholar
Bao D, Ma Y, Zhang X, Guan F, Chen W, Gao K, Qin C, Zhang L. Preliminary characterization of a leptin receptor knockout rat created by CRISPR/Cas9 system. Sci Rep. 2015;5:15942.
Article
PubMed
PubMed Central
Google Scholar
Chen B, Li Y, Yang X, Xie D. Comparable effects of alendronate and strontium ranelate on femur in ovariectomized rats. Calcif Tissue Int. 2013;93(5):481–6.
Article
CAS
PubMed
Google Scholar
Martín-Fernández M, Garzón-Márquez FM, Díaz-Curiel M, Prieto-Potin I, Alvarez-Galovich L, Guede D, Caeiro-Rey JR, De la Piedra C. Comparative study of the effects of osteoprotegerin and testosterone on bone quality in male orchidectomised rats. Aging Male. 2020;23(3):189–201.
Article
PubMed
Google Scholar
Chin KY, Ima-Nirwana S. The effects of orchidectomy and supraphysiological testosterone administration on trabecular bone structure and gene expression in rats. Aging Male. 2015;18(1):60–6.
Article
CAS
PubMed
Google Scholar
Jayusman PA, Mohamed IN, Alias E, Mohamed N, Shuid AN. The effects of Quassinoid-rich Eurycoma Longifolia extract on bone turnover and Histomorphometry indices in the androgen-deficient osteoporosis rat model. Nutrients. 2018;10(7):799.
Article
PubMed
PubMed Central
Google Scholar
Libouban H, Moreau MF, Legrand E, Audran M, Baslé MF, Chappard D. Comparison of histomorphometric descriptors of bone architecture with dual-energy X-ray absorptiometry for assessing bone loss in the orchidectomized rat. Osteoporos Int. 2002;13(5):422–8.
Article
CAS
PubMed
Google Scholar
De La Piedra C, Quiroga I, Montero M, Dapia S, Caeiro JR, Rubert M, Diaz-Curiel M, Bauss F. Daily or monthly ibandronate prevents or restores deteriorations of bone mass, architecture, biomechanical properties and markers of bone turnover in androgen-deficient aged rats. Aging Male. 2011;14(4):220–30.
Article
PubMed
Google Scholar
Chen L, Wang G, Wang Q, Liu Q, Sun Q, Chen L. N-acetylcysteine prevents orchiectomy-induced osteoporosis by inhibiting oxidative stress and osteocyte senescence. Am J Transl Res. 2019;11(7):4337–47.
CAS
PubMed
PubMed Central
Google Scholar
Iemura S, Kawao N, Okumoto K, Akagi M, Kaji H. Role of irisin in androgen-deficient muscle wasting and osteopenia in mice. J Bone Miner Metab. 2020;38(2):161–71.
Article
CAS
PubMed
Google Scholar
Tagliaferri C, Wittrant Y, Davicco MJ, Walrand S, Coxam V. Muscle and bone, two interconnected tissues. Ageing Res Rev. 2015;21:55–70.
Article
CAS
PubMed
Google Scholar
Cardozo CP, Graham ZA. Muscle-bone interactions: movement in the field of mechano-humoral coupling of muscle and bone. Ann N Y Acad Sci. 2017;1402(1):10–7.
Article
CAS
PubMed
Google Scholar
Semënov M, Tamai K, He X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem. 2005;280(29):26770–5.
Article
PubMed
Google Scholar
Brunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, Skonier JE, Zhao L, Sabo PJ, Fu Y, et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet. 2001;68(3):577–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loots GG, Kneissel M, Keller H, Baptist M, Chang J, Collette NM, Ovcharenko D, Plajzer-Frick I, Rubin EM. Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Res. 2005;15(7):928–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li X, Ominsky MS, Niu QT, Sun N, Daugherty B, D’Agostin D, Kurahara C, Gao Y, Cao J, Gong J, et al. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Mine Res. 2008;23(6):860–9.
Article
Google Scholar
Aryana I, Rini SS, Soejono CH. Importance of Sclerostin as bone-muscle mediator crosstalk. Ann Geriatr Med Res. 2022;26(2):72–82.
Article
PubMed
PubMed Central
Google Scholar
Kim JA, Roh E, Hong SH, Lee YB, Kim NH, Yoo HJ, Seo JA, Kim NH, Kim SG, Baik SH, et al. Association of serum sclerostin levels with low skeletal muscle mass: The Korean Sarcopenic Obesity Study (KSOS). Bone. 2019;128: 115053.
Article
CAS
PubMed
Google Scholar
Li X, Ominsky MS, Villasenor KS, Niu QT, Asuncion FJ, Xia X, Grisanti M, Wronski TJ, Simonet WS, Ke HZ. Sclerostin antibody reverses bone loss by increasing bone formation and decreasing bone resorption in a rat model of male osteoporosis. Endocrinology. 2018;159(1):260–71.
Article
CAS
PubMed
Google Scholar
Hesse E, Schröder S, Brandt D, Pamperin J, Saito H, Taipaleenmäki H. Sclerostin inhibition alleviates breast cancer-induced bone metastases and muscle weakness. JCI insight. 2019;5(9): e125543.
Article
PubMed
Google Scholar
Colaianni G, Cuscito C, Mongelli T, Pignataro P, Buccoliero C, Liu P, Lu P, Sartini L, Di Comite M, Mori G, et al. The myokine irisin increases cortical bone mass. Proc Natl Acad Sci USA. 2015;112(39):12157–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim H, Wrann CD, Jedrychowski M, Vidoni S, Kitase Y, Nagano K, Zhou C, Chou J, Parkman VA, Novick SJ, et al. Irisin mediates effects on bone and fat via αV integrin receptors. Cell. 2018;175(7):1756-1768.e1717.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kornel A, Den Hartogh DJ, Klentrou P, Tsiani E. Role of the Myokine Irisin on bone homeostasis: review of the current evidence. Int J Mol Sci. 2021;22(17):9136.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma Y, Qiao X, Zeng R, Cheng R, Zhang J, Luo Y, Nie Y, Hu Y, Yang Z, Zhang J et al. Irisin promotes proliferation but inhibits differentiation in osteoclast precursor cells. FASEB J. 2018:fj201700983RR. https://doi.org/10.1096/fj.201700983RR. ISSN: 0892-6638. PMID: 29771602.
He Z, Li H, Han X, Zhou F, Du J, Yang Y, Xu Q, Zhang S, Zhang S, Zhao N, et al. Irisin inhibits osteocyte apoptosis by activating the Erk signaling pathway in vitro and attenuates ALCT-induced osteoarthritis in mice. Bone. 2020;141: 115573.
Article
CAS
PubMed
Google Scholar
Colaianni G, Errede M, Sanesi L, Notarnicola A, Celi M, Zerlotin R, Storlino G, Pignataro P, Oranger A, Pesce V, et al. Irisin correlates positively with BMD in a cohort of older adult patients and downregulates the senescent Marker p21 in osteoblasts. J BoneMine Res. 2021;36(2):305–14.
CAS
Google Scholar
Vaughan RA, Gannon NP, Mermier CM, Conn CA. Irisin, a unique non-inflammatory myokine in stimulating skeletal muscle metabolism. J Physiol Biochem. 2015;71(4):679–89.
Article
CAS
PubMed
Google Scholar
Kawao N, Moritake A, Tatsumi K, Kaji H. Roles of Irisin in the linkage from muscle to bone during mechanical unloading in mice. Calcif Tissue Int. 2018;103(1):24–34.
Article
CAS
PubMed
Google Scholar