The classic. Transplantation of a portion of the tibia into the spine for Pott's disease. A preliminary report. Jama. 57:885. 1911. Clin Orthop Relat R. 1972;87:5–8.
The classic: the original paper appeared in the New York Medical Journal. 93:1013. 1911. I. An operation for progressive spinal deformities: a preliminary report of three cases from the service of the orthopaedic hospital. Clin Orthop Relat Res. 1964;35:4–8.
Xu DS, Walker CT, Godzik J, Turner JD, Smith W, Uribe JS. Minimally invasive anterior, lateral, and oblique lumbar interbody fusion: a literature review. Annals of Translational Medicine. 2018;6(6):104.
Article
PubMed
PubMed Central
Google Scholar
Mayer MH. A New Microsurgical Technique for Minimally Invasive Anterior Lumbar Interbody Fusion. Spine. 1997;22(6):691–9.
Article
CAS
PubMed
Google Scholar
Silvestre C, Mac-Thiong J, Hilmi R, Roussouly P. Complications and Morbidities of Mini-open Anterior Retroperitoneal Lumbar Interbody Fusion: Oblique Lumbar Interbody Fusion in 179 Patients. Asian Spine J. 2012;6(2):89.
Article
PubMed
PubMed Central
Google Scholar
Woods KRM, Billys JB, Hynes RA. Technical description of oblique lateral interbody fusion at L1–L5 (OLIF25) and at L5–S1 (OLIF51) and evaluation of complication and fusion rates. Spine J. 2017;17(4):545–53.
Article
PubMed
Google Scholar
Blizzard DJ, Thomas JA. MIS Single-position Lateral and Oblique Lateral Lumbar Interbody Fusion and Bilateral Pedicle Screw Fixation: Feasibility and Perioperative Results. Spine (Phila Pa 1976). 2018;43(6):440–6.
Article
Google Scholar
Mehren C, Mayer MH, Zandanell C, Siepe CJ, Korge A. The Oblique Anterolateral Approach to the Lumbar Spine Provides Access to the Lumbar Spine With Few Early Complications. Clin Orthop Relat Res. 2016;474(9):2020–7.
Article
PubMed
PubMed Central
Google Scholar
Kr W, Jb B, Ra H. Technical description of oblique lateral interbody fusion at L1–L5 (OLIF25) and at L5–S1 (OLIF51) and evaluation of complication and fusion rates. Spine J. 2017;17(4):545–53.
Article
Google Scholar
Li JXJ, Phan K, Mobbs R. Oblique Lumbar Interbody Fusion: Technical Aspects, Operative Outcomes, and Complications. World Neurosurg. 2017;98:113–23.
Article
CAS
PubMed
Google Scholar
Chung N, Jeon C, Lee H, Kweon H. Preoperative evaluation of left common iliac vein in oblique lateral interbody fusion at L5–S1. Eur Spine J. 2017;26(11):2797–803.
Article
PubMed
Google Scholar
Jin J, Ryu K, Hur J, Seong J, Kim J, Cho H. Comparative Study of the Difference of Perioperative Complication and Radiologic Results. Clin Spine Surg. 2018;31(1):31–6.
Article
PubMed
Google Scholar
Abe K, Orita S, Mannoji C, Motegi H, Aramomi M, Ishikawa T, Kotani T, Akazawa T, Morinaga T, Fujiyoshi T, et al. Perioperative Complications in 155 Patients Who Underwent Oblique Lateral Interbody Fusion Surgery. Spine. 2017;42(1):55–62.
Article
PubMed
Google Scholar
Zhu G, Hao Y, Yu L, Cai Y, Yang X. Comparing stand-alone oblique lumbar interbody fusion with posterior lumbar interbody fusion for revision of rostral adjacent segment disease. Medicine. 2018;97(40):e12680.
Article
PubMed
PubMed Central
Google Scholar
Lu T, Lu Y. Comparison of Biomechanical Performance Among Posterolateral Fusion and Transforaminal, Extreme, and Oblique Lumbar Interbody Fusion: A Finite Element Analysis. World Neurosurg. 2019;129:e890–9.
Article
PubMed
Google Scholar
Xu H, Ju W, Xu N, Zhang X, Zhu X, Zhu L, Qian X, Wen F, Wu W, Jiang F. Biomechanical comparison of transforaminal lumbar interbody fusion with 1 or 2 cages by finite-element analysis. Neurosurgery. 2013;73:s198–205.
Google Scholar
Simmons ED. Surgical treatment of patients with lumbar spinal stenosis with associated scoliosis. Clin Orthop Relat Res. 2001;384(384):45–53.
Article
Google Scholar
Hong L, And H, Ishihara A, Masahiko K, And Y. Characteristics of nerve root compression caused by degenerative lumbar spinal stenosis with scoliosis - ScienceDirect. The Spine Journal. 2003;3(6):524–9.
Google Scholar
Ruberte LM, Natarajan RN, Andersson GB. Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments–a finite element model study. J Biomech. 2009;42(3):341–8.
Article
PubMed
Google Scholar
Magerl FP. Stabilization of the lower thoracic and lumbar spine with external skeletal fixation. Clin Orthop. 1984; 189.
Santoni BG, Hynes RA, Mcgilvray KC, Rodriguez-Canessa G, Lyons AS. Cortical bone trajectory for lumbar pedicle screws. Spine J. 2009.
Shim CS, Park SW, Lee S, Lim TJ, Chun K, Kim DH. Biomechanical Evaluation of an Interspinous Stabilizing Device. Locker Spine. 2008;33(22):E820–7.
Article
PubMed
Google Scholar
Reis MT, Reyes PM, Altun I, Newcomb AG, Singh V, Chang SW, Kelly BP, Crawford NR. Biomechanical evaluation of lateral lumbar interbody fusion with secondary augmentation. J Neurosurg Spine. 2016;25(6):720–6.
Article
PubMed
Google Scholar
Hussain M, Nassr A, Natarajan RN, An HS, Andersson GBJ. Relationship between biomechanical changes at adjacent segments and number of fused bone grafts in multilevel cervical fusions: a finite element investigation. J Neurosurg Spine. 2014;20(1):22–9.
Article
PubMed
Google Scholar
Wang T, Zhao Y, Cai Z, Wang W, Xia Y, Zheng G, Liang Y, Wang Y. Effect of osteoporosis on internal fixation after spinal osteotomy: A finite element analysis. Clin Biomech. 2019;69:178–83.
Article
Google Scholar
Goel VK, Kong W, Han JS, Weinstein JN, Gilbertson LG. A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles. Spine. 1993;18(11):1531–41.
Article
CAS
PubMed
Google Scholar
Jones AC, Wilcox RK. Finite element analysis of the spine: Towards a framework of verification, validation and sensitivity analysis. Med Eng Phys. 2008;30(10):1287–304.
Article
PubMed
Google Scholar
Fagan MJ, Julian S, Mohsen AM. Finite element analysis in spine research. Proc Inst Mech Eng H. 2002;216(5):281–98.
Article
CAS
PubMed
Google Scholar
Yamamoto I, Panjabi MM, Crisco T, Oxland T. Three-Dimensional Movements of the Whole Lumbar Spine and Lumbosacral Joint. Spine. 1989;14(11):1256–60.
Article
CAS
PubMed
Google Scholar
Pearcy MJ, Tibrewal SB. Axial Rotation and Lateral Bending in the Normal Lumbar Spine Measured by Three-Dimensional Radiography. Spine. 1984;9(6):582–7.
Article
CAS
PubMed
Google Scholar
Pearcy, Portek, Shepherd. The effect of low-back pain on lumbar spinal movements measured by three-dimensional X-ray analysis. Spine. 1985.
Panjabi M. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J Bone Joint Surg Am. 1994; 76.
Kim JS, Seong JH. Endoscope-assisted oblique lumbar interbody fusion for the treatment of cauda equina syndrome: a technical note. Eur Spine J. 2016;26(2):1–7.
Google Scholar
Zairi F, Sunna TP, Westwick HJ, Weil AG, Wang Z, Boubez G, Shedid D. Mini-open oblique lumbar interbody fusion (OLIF) approach for multi-level discectomy and fusion involving L5–S1: Preliminary experience. Orthop Traumatol Surg Res. 2017;103(2):295–9.
Article
CAS
PubMed
Google Scholar
Liu C, Wang J, Zhou Y. Perioperative complications associated with minimally invasive surgery of oblique lumbar interbody fusions for degenerative lumbar diseases in 113 patients. Clin Neurol Neurosur. 2019;184:105381.
Article
Google Scholar
Patel R, Suh S, Kang S, Nam K, Siddiqui S, Chang D, Yang J. The radiologic and clinical outcomes of oblique lateral interbody fusion for correction of adult degenerative lumbar deformity. Indian J Orthop. 2019;53(4):502.
Article
PubMed
PubMed Central
Google Scholar
Joseph JR, Smith BW, Marca FL, Park P. Comparison of complication rates of minimally invasive transforaminal lumbar interbody fusion and lateral lumbar interbody fusion: a systematic review of the literature. Neurosurg Focus. 2015;39(4):E4.
Article
PubMed
Google Scholar
Cao Y, Liu F, Wan S, Liang Y, Jiang C, Feng Z, Jiang X, Chen Z. Biomechanical evaluation of different surgical procedures in single-level transforaminal lumbar interbody fusion in vitro. Clin Biomech. 2017;49:91–5.
Article
Google Scholar
Quillo-Olvera J, Lin G, Jo H, Kim J. Complications on minimally invasive oblique lumbar interbody fusion at L2–L5 levels: a review of the literature and surgical strategies. Ann Transl Med. 2018;6(6):101.
Article
PubMed
PubMed Central
Google Scholar
Shasti M, Koenig SJ, Nash AB, Bahrami S, Jauregui JJ, O’Hara NN, Jazini E, Gelb DE, Ludwig SC. Biomechanical evaluation of lumbar lateral interbody fusion for the treatment of adjacent segment disease. Spine J. 2019;19(3):545–51.
Article
PubMed
Google Scholar
St CS, Tan JS, Lieberman I. Oblique lumbar interbody fixation: a biomechanical study in human spines. J Spinal Disord Tech. 2012;25(4):183–9.
Article
Google Scholar
Marchi L, Abdala N, Oliveira L, Amaral R, Coutinho E, Pimenta L. Radiographic and clinical evaluation of cage subsidence after stand-alone lateral interbody fusion. J Neurosurg Spine. 2013;19(1):110–8.
Article
PubMed
Google Scholar
Tempel ZJ, Mcdowell MM, Panczykowski DM, Gandhoke GS, Hamilton DK, Okonkwo DO, Kanter AS. . J Neurosurg Spine. 2017:1–7.
Pham MH, Jakoi AM, Hsieh PC. Minimally invasive L5–S1 oblique lumbar interbody fusion with anterior plate. Neurosurg Focus. 2016;41(VideoSuppl1):1.
PubMed
Google Scholar
Tempel ZJ, Gandhoke GS, Okonkwo DO, Kanter AS. Impaired bone mineral density as a predictor of graft subsidence following minimally invasive transpsoas lateral lumbar interbody fusion. Eur Spine J. 2015;24(S3):414–9.
Article
PubMed
Google Scholar
Guo H, Tang Y, Guo D, Zhang S, Li Y, Mo G, Luo P, Zhou T, Ma Y, Liang D, et al. The cement leakage in cement-augmented pedicle screw instrumentation in degenerative lumbosacral diseases: a retrospective analysis of 202 cases and 950 augmented pedicle screws. Eur Spine J. 2019;28(7):1661–9.
Article
PubMed
Google Scholar
Aoki Y, Yamagata M, Nakajima F, Ikeda Y, Shimizu K, Yoshihara M, Iwasaki J, Toyone T, Nakagawa K, Nakajima A, et al. Examining risk factors for posterior migration of fusion cages following transforaminal lumbar interbody fusion: a possible limitation of unilateral pedicle screw fixation. J Neurosurg Spine. 2010;13(3):381–7.
Article
PubMed
Google Scholar
Fp M. Stabilization of the lower thoracic and lumbar spine with external skeletal fixation. Clin Orthop Relat R. 1984;189:125–41.
Google Scholar
Kim S, Lim TJ, Paterno J, Kim DH. A biomechanical comparison of supplementary posterior translaminar facet and transfacetopedicular screw fixation after anterior lumbar interbody fusion. J Neurosurg Spine. 2004;1(1):101–7.
Article
PubMed
Google Scholar
Hu Y, Zhu BK, Yuan ZS, Dong WX, Sun XY, Xu JZ, Chen XG. Anatomic study of the lumbar lamina for safe and effective placement of lumbar translaminar facet screws. J Int Med Res. 2019;47(10):5082–93.
Article
PubMed
PubMed Central
Google Scholar
Guo H, Tang Y, Guo D, Luo P, Li Y, Mo G, Ma Y, Peng J, Liang D, Zhang S. Stability Evaluation of Oblique Lumbar Interbody Fusion Constructs with Various Fixation Options: A Finite Element Analysis Based on Three-Dimensional Scanning Models. World Neurosurg. 2020;138:e530–8.
Article
PubMed
Google Scholar
Cao Y, Zhang W, Liang Y, Feng Z, Jiang C, Chen Z, Jiang X. Translaminar facet joint screw insertion with a rapid prototyping guide template: a cadaver study. Comput Assist Surg. 2019;24(1):1–6.
Article
CAS
Google Scholar
Cao Y, Liu F, Wan S, Liang Y, Jiang C, Feng Z, Jiang X, Chen Z. Biomechanical evaluation of different surgical procedures in single-level transforaminal lumbar interbody fusion in vitro. Clin Biomech (Bristol, Avon). 2017;49:91–5.
Article
Google Scholar
Zeng Z, Zhang J, Song Y, Yan W, Wu P, Tang H, Han J. Combination of Percutaneous Unilateral Translaminar Facet Screw Fixation and Interbody Fusion for Treatment of Lower Lumbar Vertebra Diseases: a Follow-Up Study. Orthop Surg. 2014;6(2):110–7.
Article
PubMed
PubMed Central
Google Scholar
Song C, Chang H, Zhang D, Zhang Y, Shi M, Meng X. Biomechanical Evaluation of Oblique Lumbar Interbody Fusion with Various Fixation Options: A Finite Element Analysis. Orthop Surg. 2021;13(2):517–29.
Article
PubMed
PubMed Central
Google Scholar