Surveillance of cerebral palsy in Europe. Surveillance of cerebral palsy in Europe: a collaboration of cerebral palsy surveys and registers. Surveillance of cerebral palsy in Europe (SCPE). Dev Med Child Neurol. 2000;42.
Smithers-Sheedy H, Mcintyre S, Gibson C, Meehan E, Scott H, Goldsmith S, et al. A special supplement: findings from the Australian cerebral palsy register, birth years 1993 to 2006. Dev Med Child Neurol. 2016;58:5–10. https://doi.org/10.1111/dmcn.13026.
Article
PubMed
Google Scholar
Van Naarden BK, Doernberg N, Schieve L, Christensen D, Goodman A, Yeargin-Allsopp M. Birth prevalence of cerebral palsy: a population-based study. Pediatrics. 2016;137:e20152872. https://doi.org/10.1542/peds.2015-2872.
Article
Google Scholar
Andersen GL, Irgens LM, Haagaas I, Skranes JS, Meberg AE, Vik T. Cerebral palsy in Norway: prevalence, subtypes and severity. Eur J Paediatr Neurol. 2008;12:4–13.
Article
PubMed
Google Scholar
Stanley FJ, Blair E, Alberman E. Cerebral palsies: epidemiology and causal pathways: Cambridge University Press; 2000.
Google Scholar
Blair E, Langdon K, McIntyre S, Lawrence D, Watson L. Survival and mortality in cerebral palsy: observations to the sixth decade from a data linkage study of a total population register and National Death Index. BMC Neurol. 2019;19:1–11.
Article
Google Scholar
Little WJ. Course of lectures on the deformities of the human frame. Lancet. 1844;41:809–15.
Article
Google Scholar
Little WJ. On the influence of abnormal parturition, difficult labours, premature birth, and asphyxia neonatorum, on the mental and physical condition of the child, especially in relation to deformities. Trans Obstet Soc London. 1861;3:293–344.
Google Scholar
Morris C. Definition and classification of cerebral palsy: a historical perspective. Dev Med Child Neurol. 2007;49(SUPPL):2.
Google Scholar
Bax M. Terminology and classification of cerebral palsy. Dev Med Child Neurol. 1964;6:295–7.
Article
CAS
PubMed
Google Scholar
Mutch L, Alberman E, Hagberg B, Kodama K, Perat MV. Cerebral palsy epidemiology: where are we now and where are we going? Dev Med Child Neurol. 1992;34:547–51.
Article
CAS
PubMed
Google Scholar
Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol. 2007;49(SUPPL. 2):8–14. https://doi.org/10.1111/j.1469-8749.2007.tb12610.x.
Article
Google Scholar
Korzeniewski SJ, Birbeck G, DeLano MC, Potchen MJ, Paneth N. A systematic review of neuroimaging for cerebral palsy. J Child Neurol. 2008;23:216–27. https://doi.org/10.1177/0883073807307983.
Article
PubMed
Google Scholar
Horber V, Sellier E, Horridge K, Rackauskaite G, Andersen GL, Virella D, et al. The origin of the cerebral palsies: contribution of population-based neuroimaging data. Neuropediatrics. 2020;51:113–9. https://doi.org/10.1055/s-0039-3402007.
Article
PubMed
Google Scholar
Himmelmann K, Horber V, De La Cruz J, Horridge K, Mejaski-Bosnjak V, Hollody K, et al. MRI classification system (MRICS) for children with cerebral palsy: development, reliability, and recommendations. Dev Med Child Neurol. 2017;59.
Morgan C, Romeo DM, Chorna O, Novak I, Galea C, Del Secco S, et al. The pooled diagnostic accuracy of neuroimaging, general movements, and neurological examination for diagnosing cerebral palsy early in high-risk infants: a case control study. J Clin Med. 2019;8:1879.
Article
PubMed Central
Google Scholar
Pandyan AD, Gregoric M, Barnes MP, Wood D, Van WF, Burridge J, et al. Spasticity : Clinical perceptions , neurological realities and meaningful measurement. Disabil Rehabil. 2005;27:2–6.
Article
CAS
PubMed
Google Scholar
Malhotra S, Pandyan AD, Day CR, Jones PW, Hermens H. Spasticity, an impairment that is poorly defined and poorly measured. Clin Rehabil. 2009;23:651–8.
Article
CAS
PubMed
Google Scholar
Bar-On L, Molenaers G, Aertbeliën E, Monari D, Feys H, Desloovere K. The relation between spasticity and muscle behavior during the swing phase of gait in children with cerebral palsy. Res Dev Disabil. 2014;35:3354–64. https://doi.org/10.1016/J.RIDD.2014.07.053.
Article
PubMed
Google Scholar
Lance JW. Symposium synopsis. Spasticity Disord mot. Control. 1980:487–9.
Shevell MI. The terms diplegia and quadriplegia should not be abandoned. Dev Med Child Neurol. 2010;52.
Colver AF, Sethumadhavan T. The term diplegia should be abandoned. Arch Dis Child. 2003;88:286–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hurvitz EA, Brown SH. The terms diplegia, quadriplegia, and hemiplegia should be phased out. Dev Med Child Neurol. 2010;52.
Sellier E, Horber V, Krägeloh-Mann I, De La Cruz J, Cans C. Interrater reliability study of cerebral palsy diagnosis, neurological subtype, and gross motor function. Dev Med Child Neurol. 2012;54.
Cans C, Dolk H, Platt MJ, Colver A, Prasauskiene A, Krägel-Oh-Mann I. Recommendations from the SCPE collaborative group for defining and classifying cerebral palsy. Dev Med Child Neurol. 2007;49(SUPPL):2.
Google Scholar
Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39:214–23. https://doi.org/10.1111/j.1469-8749.1997.tb07414.x.
Article
CAS
PubMed
Google Scholar
Reid SM, Carlin JB, Reddihough DS. Using the gross motor function classification system to describe patterns of motor severity in cerebral palsy. Dev Med Child Neurol. 2011;53:1007–12.
Article
PubMed
Google Scholar
Paulson A, Vargus-Adams J. Overview of four functional classification systems commonly used in cerebral palsy. Children. 2017;4.
Hadders-Algra M. Neural substrate and clinical significance of general movements: an update. Dev Med Child Neurol. 2018;60:39–46.
Article
PubMed
Google Scholar
Olsen JE, Allinson LG, Doyle LW, Brown NC, Lee KJ, Eeles AL, et al. Preterm and term-equivalent age general movements and 1-year neurodevelopmental outcomes for infants born before 30 weeks’ gestation. Dev Med Child Neurol. 2018;60:47–53.
Article
PubMed
Google Scholar
Herskind A, Ritterband-Rosenbaum A, Willerslev-Olsen M, Lorentzen J, Hanson L, Lichtwark G, et al. Muscle growth is reduced in 15-month-old children with cerebral palsy. Dev Med Child Neurol. 2016;58:485–91. https://doi.org/10.1111/dmcn.12950.
Article
PubMed
Google Scholar
Nikolaou S, Peterson E, Kim A, Wylie C, Cornwall R. Impaired growth of denervated muscle contributes to contracture formation following neonatal brachial plexus injury. J Bone Jt Surg - Ser A. 2011;93:461–70.
Article
Google Scholar
Nooijen C, Slaman J, Van Der Slot W, Stam HJ, Roebroeck ME, Van Den Berg-Emons R. Health-related physical fitness of ambulator yadole scents and young adults with spastic cerebral palsy. J Rehabil Med. 2014;46.
McPhee PG, Brunton LK, Timmons BW, Bentley T, Gorter JW. Fatigue and its relationship with physical activity, age, and body composition in adults with cerebral palsy. Dev Med Child Neurol. 2017;59.
García CC, Alcocer-Gamboa A, Ruiz MP, Caballero IM, Faigenbaum AD, Esteve-Lanao J, et al. Metabolic, cardiorespiratory, and neuromuscular fitness performance in children with cerebral palsy: a comparison with healthy youth. J Exerc Rehabil. 2016;12.
Jacobson DNO, Löwing K, Tedroff K. Health-related quality of life, pain, and fatigue in young adults with cerebral palsy. Dev Med Child Neurol. 2020;62.
Verschuren O, Smorenburg ARP, Luiking Y, Bell K, Barber L, Peterson MD. Determinants of muscle preservation in individuals with cerebral palsy across the lifespan: a narrative review of the literature. J Cachexia Sarcopenia Muscle. 2018;9:453–64. https://doi.org/10.1002/jcsm.12287.
Article
PubMed
PubMed Central
Google Scholar
Graham HK, Rosenbaum P, Paneth N, Dan B, Lin JP, DiL D, et al. Cerebral palsy. Nat Rev Dis Primers. 2016;2.
Lee SSM, Gaebler-Spira D, Zhang LQ, Rymer WZ, Steele KM. Use of shear wave ultrasound elastography to quantify muscle properties in cerebral palsy. Clin Biomech. 2016;31:20–8.
Article
Google Scholar
Graham HK, Selber P. Musculoskeletal aspects of cerebral palsy. J Bone Jt Surg - Ser B. 2003;85:157–66. https://doi.org/10.1302/0301-620X.85B2.14066.
Article
Google Scholar
Barrett RS, Lichtwark GA. Gross muscle morphology and structure in spastic cerebral palsy: a systematic review. Dev Med Child Neurol. 2010;52:794–804.
Article
PubMed
Google Scholar
Lieber RL, Fridén J. Spasticity causes a fundamental rearrangement of muscle-joint interaction. Muscle Nerve. 2002;25:265–70. https://doi.org/10.1002/mus.10036.
Article
PubMed
Google Scholar
Lampe R, Grassl S, Mitternacht J, Gerdesmeyer L, Gradinger R. MRT-measurements of muscle volumes of the lower extremities of youths with spastic hemiplegia caused by cerebral palsy. Brain and Development. 2006;28:500–6. https://doi.org/10.1016/j.braindev.2006.02.009.
Article
PubMed
Google Scholar
Malaiya R, McNee AE, Fry NR, Eve LC, Gough M, Shortland AP. The morphology of the medial gastrocnemius in typically developing children and children with spastic hemiplegic cerebral palsy. J Electromyogr Kinesiol. 2007;17:657–63. https://doi.org/10.1016/j.jelekin.2007.02.009.
Article
PubMed
Google Scholar
Oberhofer K, Stott NS, Mithraratne K, Anderson IA. Subject-specific modelling of lower limb muscles in children with cerebral palsy. Clin Biomech. 2010;25:88–94.
Article
CAS
Google Scholar
Barber L, Hastings-Ison T, Baker R, Barrett R, Lichtwark GA. Medial gastrocnemius muscle volume and fascicle length in children aged 2 to 5 years with cerebral palsy. Dev Med Child Neurol. 2011;53:543–8. https://doi.org/10.1111/j.1469-8749.2011.03913.x.
Article
PubMed
Google Scholar
Noble JJ, Fry NR, Lewis AP, Keevil SF, Gough M, Shortland AP. Lower limb muscle volumes in bilateral spastic cerebral palsy. Brain and Development. 2014;36:294–300.
Article
PubMed
Google Scholar
Reid SLSL, Pitcher CA, Williams SASA, Licari MK, Valentine JP, Shipman PJ, et al. Does muscle size matter? The relationship between muscle size and strength in children with cerebral palsy. Disabil Rehabil. 2014;37:579–84. https://doi.org/10.3109/09638288.2014.935492.
Article
PubMed
Google Scholar
Handsfield GG, Meyer CH, Abel MF, Blemker SS. Heterogeneity of muscle sizes in the lower limbs of children with cerebral palsy. Muscle Nerve. 2016;53:933–45.
Article
PubMed
Google Scholar
Sahrmann AS, Stott NS, Besier TF, Fernandez JW, Handsfield GG. Soleus muscle weakness in cerebral palsy: muscle architecture revealed with diffusion tensor imaging. PLoS One. 2019;14:1–16.
Article
Google Scholar
D’Souza A, Bolsterlee B, Lancaster A, Herbert RD. Muscle architecture in children with cerebral palsy and ankle contractures: an investigation using diffusion tensor imaging. Clin Biomech. 2019;68:205–11.
Article
Google Scholar
Mathewson MA, Ward SR, Chambers HG, Lieber RL. High resolution muscle measurements provide insights into equinus contractures in patients with cerebral palsy. J Orthop Res. 2015;33:33–9. https://doi.org/10.1002/jor.22728.
Article
PubMed
Google Scholar
Smith LR, Lee KS, Ward SR, Chambers HG, Lieber RL. Hamstring contractures in children with spastic cerebral palsy result from a stiffer extracellular matrix and increased in vivo sarcomere length. J Physiol. 2011;589:2625–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Massaad A, Assi A, Bakouny Z, Bizdikian AJ, Skalli W, Ghanem I. Alterations of treatment-naïve pelvis and thigh muscle morphology in children with cerebral palsy. J Biomech. 2019;82:178–85. https://doi.org/10.1016/j.jbiomech.2018.10.022.
Article
PubMed
Google Scholar
Pitcher CA, Elliott CM, Panizzolo FA, Valentine JP, Stannage K, Reid SL. Ultrasound characterization of medial gastrocnemius tissue composition in children with spastic cerebral palsy. Muscle Nerve. 2015;52:397–403. https://doi.org/10.1002/mus.24549.
Article
PubMed
Google Scholar
Sartori M, Fernandez JWW, Modenese L, Carty CPP, Barber LAA, Oberhofer K, et al. Toward modeling locomotion using electromyography-informed 3D models: application to cerebral palsy. Wiley Interdiscip Rev Syst Biol Med. 2017;9.
Shortland AP, Harris C a, Gough M, Robinson RO. Architecture of the medial gastrocnemius in children with spastic diplegia. Dev Med Child Neurol 2002;44:158.
Moreau NG, Holthaus K, Marlow N. Differential adaptations of muscle architecture to high-velocity versus traditional strength training in cerebral palsy. Neurorehabil Neural Repair. 2013;27:325–34. https://doi.org/10.1177/1545968312469834.
Article
PubMed
Google Scholar
Barber L, Barrett R, Lichtwark G. Validity and reliability of a simple ultrasound approach to measure medial gastrocnemius muscle length. J Anat. 2011;218:637–42.
Article
PubMed
PubMed Central
Google Scholar
Mohagheghi AA, Khan T, Meadows TH, Giannikas K, Baltzopoulos V, Maganaris CN. In vivo gastrocnemius muscle fascicle length in children with and without diplegic cerebral palsy. Dev Med Child Neurol. 2008;50:44–50. https://doi.org/10.1111/j.1469-8749.2007.02008.x.
Article
CAS
PubMed
Google Scholar
Shortland AP, Fry NR, Eve LC, Gough M. Changes to medial gastrocnemius architecture after surgical intervention in spastic diplegia. Dev Med Child Neurol. 2004;46:667–73. https://doi.org/10.1111/j.1469-8749.2004.tb00979.x.
Article
PubMed
Google Scholar
Moreau NG, Teefey SA, Damiano DL. In vivo muscle architecture and size of the rectus femoris and vastus lateralis in children and adolescents with cerebral palsy. Dev Med Child Neurol. 2009;51:800–6.
Article
PubMed
PubMed Central
Google Scholar
Matthiasdottir S, Hahn M, Yaraskavitch M, Herzog W. Muscle and fascicle excursion in children with cerebral palsy. Clin Biomech. 2014;29:458–62.
Article
Google Scholar
Lichtwark GA, Farris DJ, Chen X, Hodges PW, Delp SL. Microendoscopy reveals positive correlation in multiscale length changes and variable sarcomere lengths across different regions of human muscle. J Appl Physiol. 2018;125:1812–20.
Article
Google Scholar
Cutts A. The range of sarcomere lengths in the muscles of the human lower limb; 1988.
Google Scholar
Lieber RL, Loren GJ, Friden J. In vivo measurement of human wrist extensor muscle sarcomere length changes; 1994.
Book
Google Scholar
Larkin-Kaiser KA, Howard JJ, Leonard T, Joumaa V, Gauthier L, Logan K, et al. Relationship of muscle morphology to hip displacement in cerebral palsy: a pilot study investigating changes intrinsic to the sarcomere. J Orthop Surg Res. 2019;14:187. https://doi.org/10.1186/s13018-019-1239-1.
Article
PubMed
PubMed Central
Google Scholar
Smeulders MJC, Kreulen M, Hage JJ, Huijing PA, van der Horst CMAM. Overstretching of sarcomeres may not cause cerebral palsy muscle contracture. J Orthop Res. 2004;22:1331–5. https://doi.org/10.1016/j.orthres.2004.04.006.
Article
PubMed
Google Scholar
Ateş F, Temelli Y, Yucesoy CA. The mechanics of activated semitendinosus are not representative of the pathological knee joint condition of children with cerebral palsy. J Electromyogr Kinesiol. 2016;28:130–6.
Article
PubMed
Google Scholar
Yucesoy CA, Temelli Y, Ateş F. Intra-operatively measured spastic semimembranosus forces of children with cerebral palsy. J Electromyogr Kinesiol. 2017;36:49–55. https://doi.org/10.1016/j.jelekin.2017.07.003.
Article
PubMed
Google Scholar
Barber L, Barrett R, Lichtwark G. Medial gastrocnemius muscle fascicle active torque-length and Achilles tendon properties in young adults with spastic cerebral palsy. J Biomech. 2012;45:2526–30. https://doi.org/10.1016/j.jbiomech.2012.07.018.
Article
PubMed
Google Scholar
Llewellyn ME, Barretto RPJ, Delp SL, Schnitzer MJ. Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans. Nature. 2008;454:784–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen X, Delp SL. Human soleus sarcomere lengths measured using in vivo microendoscopy at two ankle flexion angles. J Biomech. 2016;49:4164–7. https://doi.org/10.1016/j.jbiomech.2016.11.010.
Article
PubMed
PubMed Central
Google Scholar
Gao F, Zhao H, Gaebler-Spira D, Zhang L-QQ. In vivo evaluations of morphologic changes of gastrocnemius muscle fascicles and achilles tendon in children with cerebral palsy. Am J Phys Med Rehabil. 2011;90:364–71. https://doi.org/10.1097/PHM.0b013e318214f699.
Article
PubMed
Google Scholar
Wren TALL, Cheatwood AP, Rethlefsen SA, Hara R, Perez FJ, Kay RM. Achilles tendon length and medial gastrocnemius architecture in children with cerebral palsy and equinus gait. J Pediatr Orthop. 2010;30:479–84. https://doi.org/10.1097/BPO.0b013e3181e00c80.
Article
PubMed
Google Scholar
Barber L, Barrett R, Lichtwark G. Passive muscle mechanical properties of the medial gastrocnemius in young adults with spastic cerebral palsy. J Biomech. 2011;44:2496–500. https://doi.org/10.1016/j.jbiomech.2011.06.008.
Article
PubMed
Google Scholar
Theis N, Korff T, Kairon H, Mohagheghi AA. Does acute passive stretching increase muscle length in children with cerebral palsy? Clin Biomech. 2013;28:1061–7. https://doi.org/10.1016/j.clinbiomech.2013.10.001.
Article
Google Scholar
Kalkman BM, Bar-On L, Cenni F, Maganaris CN, Bass A, Holmes G, et al. Muscle and tendon lengthening behaviour of the medial gastrocnemius during ankle joint rotation in children with cerebral palsy. Exp Physiol. 2018;103:1367–76.
Article
PubMed
Google Scholar
Barber LA, Barrett RS, Gillett JG, Cresswell AG, Lichtwark GA. Neuromechanical properties of the triceps surae in young and older adults. Exp Gerontol. 2013;48:1147–55.
Article
PubMed
Google Scholar
Chen Y, He L, Xu K, Li J, Guan B, Tang H. Comparison of calf muscle architecture between Asian children with spastic cerebral palsy and typically developing peers. PLoS One. 2018;13:e0190642. https://doi.org/10.1371/journal.pone.0190642.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kruse A, Schranz C, Tilp M, Svehlik M. Muscle and tendon morphology alterations in children and adolescents with mild forms of spastic cerebral palsy. BMC Pediatr. 2018;18:273. https://doi.org/10.1186/s12887-018-1251-3.
Article
PubMed
PubMed Central
Google Scholar
Barber L, Hastings-Ison T, Baker R, Barrett R, Lichtwark G. Medial gastrocnemius muscle volume and fascicle length in children aged 2 to 5years with cerebral palsy. Dev Med Child Neurol. 2011;53:543–8.
Article
PubMed
Google Scholar
Narici MV, Maganaris CN, Reeves ND, Capodaglio P. Effect of aging on human muscle architecture. J Appl Physiol. 2003;95:2229–34.
Article
CAS
PubMed
Google Scholar
Turton P, Hay R, Taylor J, McPhee J, Welters I. Human limb skeletal muscle wasting and architectural remodeling during five to ten days intubation and ventilation in critical care - an observational study using ultrasound. BMC Anesthesiol. 2016;16:1–8.
Article
Google Scholar
Kubo K, Kanehisa H, Azuma K, Ishizu M, Kuno SY, Okada M, et al. Muscle architectural characteristics in young and elderly men and women. Int J Sports Med. 2003;24:125–30. https://doi.org/10.1055/s-2003-38204.
Article
CAS
PubMed
Google Scholar
Lieber RL, Fridén J. Clinical significance of skeletal muscle architecture. Clin Orthop Relat Res. 2001;23:140–51.
Article
Google Scholar
Schless SH, Cenni F, Bar-On L, Hanssen B, Goudriaan M, Papageorgiou E, et al. Combining muscle morphology and neuromotor symptoms to explain abnormal gait at the ankle joint level in cerebral palsy. Gait Posture. 2019;68:531–7. https://doi.org/10.1016/j.gaitpost.2018.12.002.
Article
PubMed
Google Scholar
Schless SH, Cenni F, Bar-On L, Hanssen B, Kalkman B, O’brien T, et al. Medial gastrocnemius volume and echo-intensity after botulinum neurotoxin a interventions in children with spastic cerebral palsy. Dev Med Child Neurol. 2019;61:783–90. https://doi.org/10.1111/dmcn.14056.
Article
PubMed
Google Scholar
Cenni F, Bar-On L, Schless SH, Kalkman B, Aertbelien E, Bruyninckx H, et al. Medial Gastrocnemius Muscle–Tendon Junction and Fascicle Lengthening across the Range of Motion Analyzed in 2-D and 3-D Ultrasound Images. Ultrasound Med Biol. 2018;44:2505–18.
Article
PubMed
Google Scholar
Obst SJ, Boyd R, Read F, Barber L. Quantitative 3-D ultrasound of the medial gastrocnemius muscle in children with unilateral spastic cerebral palsy. Ultrasound Med Biol. 2017;43:2814–23.
Article
PubMed
Google Scholar
Smith LR, Chambers HG, Lieber RL. Reduced satellite cell population may lead to contractures in children with cerebral palsy. Dev Med Child Neurol. 2013;55:264–70.
Article
PubMed
Google Scholar
Dayanidhi S, Lieber RL. Muscle biology of contractures in children with cerebral palsy. In: Cerebral palsy: a multidisciplinary approach. 3rd ed: Springer International Publishing; 2018. p. 143–53.
Chapter
Google Scholar
De Bruin M, Smeulders MJ, Kreulen M, Huijing PA, Jaspers RT. Intramuscular connective tissue differences in spastic and control muscle: a mechanical and histological study. PLoS One. 2014;9.
Marbini A, Ferrari A, Cioni G, Bellanova MF, Fusco C, Gemignani F. Immunohistochemical study of muscle biopsy in children with cerebral palsy. Brain and Development. 2002;24:63–6. https://doi.org/10.1016/S0387-7604(01)00394-1.
Article
PubMed
Google Scholar
Von Walden F, Gantelius S, Liu C, Borgström H, Björk L, Gremark O, et al. Muscle contractures in patients with cerebral palsy and acquired brain injury are associated with extracellular matrix expansion, pro-inflammatory gene expression, and reduced rRNA synthesis. Muscle Nerve. 2018;58:277–85.
Article
Google Scholar
Rose J, Haskell WL, Gamble JG, Hamilton RL, Brown D, a, Rinsky L. Muscle pathology and clinical measures of disability in children with cerebral palsy. J Orthop Res. 1994;12:758–68.
Article
CAS
PubMed
Google Scholar
Domenighetti AA, Mathewson MA, Pichika R, Sibley LA, Zhao L, Chambers HG, et al. Loss of myogenic potential and fusion capacity of muscle stem cells isolated from contractured muscle in children with cerebral palsy. Am J Physiol Cell Physiol. 2018;315:C247–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kinney MC, Dayanidhi S, Dykstra PB, McCarthy JJ, Peterson CA, Lieber RL. Reduced skeletal muscle satellite cell number alters muscle morphology after chronic stretch but allows limited serial sarcomere addition. Muscle Nerve. 2017;55:384–92.
Article
CAS
PubMed
Google Scholar
Murphy MM, Lawson JA, Mathew SJ, Hutcheson DA, Kardon G. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development. 2011;138:3625–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith LR, Pontén E, Hedström Y, Ward SR, Chambers HG, Subramaniam S, et al. Novel transcriptional profile in wrist muscles from cerebral palsy patients. BMC Med Genet. 2009;2:44.
Google Scholar
Bonnieu A, Carnac G, Vernus B. Myostatin in the pathophysiology of skeletal muscle. Curr Genomics. 2009;8:415–22. https://doi.org/10.2174/138920207783591672.
Article
Google Scholar
Burks TN, Cohn RD. Role of TGF-β signaling in inherited and acquired myopathies. Skelet Muscle. 2011;1:19. https://doi.org/10.1186/2044-5040-1-19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kirk S, Oldham J, Kambadur R, Sharma M, Dobbie P, Bass J. Myostatin regulation during skeletal muscle regeneration. J Cell Physiol. 2000;184:356–63.
Article
CAS
PubMed
Google Scholar
Snijders T, Nederveen JP, McKay BR, Joanisse S, Verdijk LB, van Loon LJC, et al. Satellite cells in human skeletal muscle plasticity. Front Physiol. 2015;6:OCT. https://doi.org/10.3389/fphys.2015.00283.
Article
Google Scholar
Zhao BL, Kollias HD, Wagner KR. Myostatin directly regulates skeletal muscle fibrosis. J Biol Chem. 2008;283:19371–8.
Article
Google Scholar
Mackey AL, Magnan M, Chazaud B, Kjaer M. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration. J Physiol. 2017;595:5115–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195–200. https://doi.org/10.1242/jcs.023820.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gillies AR, Lieber RL. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve. 2011;44:318–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mendias CL. Fibroblasts take the Centre stage in human skeletal muscle regeneration. J Physiol. 2017;595:5005. https://doi.org/10.1113/JP274403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Booth CM, Cortina-Borja MJF, Theologis TN. Collagen accumulation in muscles of children with cerebral palsy and correlation with severity of spasticity. Dev Med Child Neurol. 2001;43:314–20. https://doi.org/10.1111/j.1469-8749.2001.tb00211.x.
Article
CAS
PubMed
Google Scholar
Webster MT, Manor U, Lippincott-Schwartz J, Fan CM. Intravital imaging reveals ghost fibers as architectural units guiding myogenic progenitors during regeneration. Cell Stem Cell. 2016;18:243–52. https://doi.org/10.1016/j.stem.2015.11.005.
Article
CAS
PubMed
Google Scholar
Contreras O, Rebolledo DL, Oyarzún JE, Olguín HC, Brandan E. Connective tissue cells expressing fibro/adipogenic progenitor markers increase under chronic damage: relevance in fibroblast-myofibroblast differentiation and skeletal muscle fibrosis. Cell Tissue Res. 2016;364:647–60. https://doi.org/10.1007/s00441-015-2343-0.
Article
CAS
PubMed
Google Scholar
Noble JJ, Charles-Edwards GD, Keevil SF, Lewis AP, Gough M, Shortland AP. Intramuscular fat in ambulant young adults with bilateral spastic cerebral palsy. BMC Musculoskelet Disord. 2014;15:1–8.
Article
Google Scholar
Shortland A. Muscle deficits in cerebral palsy and early loss of mobility: can we learn something from our elders? Dev Med Child Neurol. 2009;51(SUPPL. 4):59–63. https://doi.org/10.1111/j.1469-8749.2009.03434.x.
Article
PubMed
Google Scholar
Willerslev-Olsen M, Choe Lund M, Lorentzen J, Barber L, Kofoed-Hansen M, Nielsen JB. Impaired muscle growth precedes development of increased stiffness of the triceps surae musculotendinous unit in children with cerebral palsy. Dev Med Child Neurol. 2018;60:672–9. https://doi.org/10.1111/dmcn.13729.
Article
PubMed
Google Scholar
Zwier JN, Van Schie PEM, Becher JG, Smits D-W, Gorter JW, Dallmeijer AJ. Physical activity in young children with cerebral palsy. Disabil Rehabil. 2010;32:1501–8.
Article
PubMed
Google Scholar
den Berg-Emons HJG, Saris WHM, De Barbanson DC, Westerterp KR, Huson A, Van Baak MA. Daily physical activity of schoolchildren with spastic diplegia and of healthy control subjects. J Pediatr. 1995;127:578–84.
Article
PubMed
Google Scholar
Stevens SL, Holbrook EA, Fuller DK, Morgan DW. Influence of age on step activity patterns in children with cerebral palsy and typically developing children. Arch Phys Med Rehabil. 2010;91:1891–6.
Article
PubMed
PubMed Central
Google Scholar
Bjornson KF, Belza B, Kartin D, Logsdon R, McLaughlin JF. Ambulatory physical activity performance in youth with cerebral palsy and youth who are developing typically. Phys Ther. 2007;87:248–57.
Article
PubMed
Google Scholar
Maher CA, Williams MT, Olds T, Lane AE. Physical and sedentary activity in adolescents with cerebral palsy. Dev Med Child Neurol. 2007;49:450–7.
Article
PubMed
Google Scholar
Bell KL, Davies PSW. Energy expenditure and physical activity of ambulatory children with cerebral palsy and of typically developing children. Am J Clin Nutr. 2010;92:313–9.
Article
CAS
PubMed
Google Scholar
Bjornson KF, Zhou C, Stevenson R, Christakis D, Song K. Walking activity patterns in youth with cerebral palsy and youth developing typically. Disabil Rehabil. 2014;36:1279–84. https://doi.org/10.3109/09638288.2013.845254.
Article
PubMed
Google Scholar
Theis N, Brown MA, Wood P, Waldron M. Leucine supplementation increases muscle strength and volume, reduces inflammation, and affects wellbeing in adults and adolescents with cerebral palsy. J Nutr. 2020. https://doi.org/10.1093/jn/nxaa006.
Day SM, Strauss DJ, Vachon PJ, Rosenbloom L, Shavelle RM, Wu YW. Growth patterns in a population of children and adolescents with cerebral palsy. Dev Med Child Neurol. 2007;49:167–71.
Article
PubMed
Google Scholar
Brooks J, Day S, Shavelle R, Strauss D. Low weight, morbidity, and mortality in children with cerebral palsy: new clinical growth charts. Pediatrics. 2011;128:e299–307.
Article
PubMed
Google Scholar
Murphy KP. The adult with cerebral palsy. Orthop Clin North Am. 2010;41:595–605.
Article
PubMed
Google Scholar
Day SM, Wu YW, Strauss DJ, Shavelle RM, Reynolds RJ. Change in ambulatory ability of adolescents and young adults with cerebral palsy. Dev Med Child Neurol. 2007;49:647–53.
Article
PubMed
Google Scholar
Andersson C, Mattsson E. Adults with cerebral palsy: a survey describing problems, needs, and resources, with special emphasis on locomotion. Dev Med Child Neurol. 2001;43:76–82. https://doi.org/10.1017/S0012162201.
Article
CAS
PubMed
Google Scholar
Jahnsen R, Villien L, Egeland T, Stanghelle JK, Holm I. Locomotion skills in adults with cerebral palsy. Clin Rehabil. 2004;18:309–16. https://doi.org/10.1191/0269215504cr735oa.
Article
CAS
PubMed
Google Scholar
Bottos M, Feliciangeli A, Sciuto L, Gericke C, Vianello A. Functional status of adults with cerebral palsy and implications for treatment of children. Dev Med Child Neurol. 2007;43:516–28. https://doi.org/10.1111/j.1469-8749.2001.tb00755.x.
Article
Google Scholar
Opheim A, Jahnsen R, Olsson E, Stanghelle JK. Walking function, pain, and fatigue in adults with cerebral palsy: a 7-year follow-up study. Dev Med Child Neurol. 2009;51:381–8. https://doi.org/10.1111/j.1469-8749.2008.03250.x.
Article
PubMed
Google Scholar
Chiu HC, Ada L, Butler J, Coulson S. Relative contribution of motor impairments to limitations in activity and restrictions in participation in adults with hemiplegic cerebral palsy. Clin Rehabil. 2010;24:454–62. https://doi.org/10.1177/0269215509353263.
Article
PubMed
Google Scholar
Novak I, Morgan C, Fahey M, Finch-Edmondson M, Galea C, Hines A, et al. State of the evidence traffic lights 2019: systematic review of interventions for preventing and treating children with cerebral palsy. Curr Neurol Neurosci Rep. 2020;20. https://doi.org/10.1007/s11910-020-1022-z.
Boyd RN, Hays RM. Current evidence for the use of botulinum toxin type a in the management of children with cerebral palsy: a systematic review. Eur J Neurol. 2001;8:1–20. https://doi.org/10.1046/j.1468-1331.2001.00034.x.
Article
PubMed
Google Scholar
Blumetti FC, Belloti JC, Tamaoki MJ, Pinto JA. Botulinum toxin type a in the treatment of lower limb spasticity in children with cerebral palsy. Cochrane Database Syst Rev. 2019. https://doi.org/10.1002/14651858.cd001408.pub2.
Multani I, Manji J, Hastings-Ison T, Khot A, Graham K. Botulinum toxin in the Management of Children with cerebral palsy. Pediatr Drugs. 2019;21:261–81. https://doi.org/10.1007/s40272-019-00344-8.
Article
Google Scholar
Williams SA, Reid S, Elliott C, Shipman P, Valentine J. Muscle volume alterations in spastic muscles immediately following botulinum toxin type-a treatment in children with cerebral palsy. Dev Med Child Neurol. 2013;55:813–20. https://doi.org/10.1111/dmcn.12200.
Article
PubMed
Google Scholar
Alexander C, Elliott C, Valentine J, Stannage K, Bear N, Donnelly CJ, et al. Muscle volume alterations after first botulinum neurotoxin a treatment in children with cerebral palsy: a 6-month prospective cohort study. Dev Med Child Neurol. 2018;60:1165–71. https://doi.org/10.1111/dmcn.13988.
Article
PubMed
Google Scholar
Williams SA, Elliott C, Valentine J, Gubbay A, Shipman P, Reid S. Combining strength training and botulinum neurotoxin intervention in children with cerebral palsy: the impact on muscle morphology and strength. Disabil Rehabil. 2013;35:596–605. https://doi.org/10.3109/09638288.2012.711898.
Article
PubMed
Google Scholar
Fortuna R, Aurélio Vaz M, Rehan Youssef A, Longino D, Herzog W. Changes in contractile properties of muscles receiving repeat injections of botulinum toxin (Botox). J Biomech. 2011;44.
Ma J, Elsaidi GA, Smith TL, Walker FO, Tan KH, Martin E, et al. Time course of recovery of juvenile skeletal muscle after botulinum toxin a injection: an animal model study. Am J Phys Med Rehabil. 2004;83.
Barber L, Hastings-Ison T, Baker R, Kerr Graham H, Barrett R, Lichtwark G. The effects of botulinum toxin injection frequency on calf muscle growth in young children with spastic cerebral palsy: a 12-month prospective study. J Child Orthop. 2013;7.
Van Campenhout A, Verhaegen A, Pans S, Molenaers G. Botulinum toxin type a injections in the psoas muscle of children with cerebral palsy: muscle atrophy after motor end plate-targeted injections. Res Dev Disabil. 2013;34.
Gough M, Fairhurst C, Shortland AP. Botulinum toxin and cerebral palsy: time for reflection? Dev Med Child Neurol. 2005;47.
Graham HK, Rodda JM. Botulinum toxin and cerebral palsy: time for reflection? Dev Med Child Neurol. 2006;48.
Steinbok P. Selective dorsal rhizotomy for spastic cerebral palsy: a review. Childs Nerv Syst. 2007;23:981–90.
Article
PubMed
Google Scholar
Lumbosacral Dorsal Rhizotomy for Spastic Cerebral Palsy: A Health Technology Assessment. Ontario health technology assessment series. 2017;17.
Wright FV, Sheli EMH, Drake JM, Wedge JH, Naumann S. Evaluation of selective dorsal rhizotomy for the reduction of spasticity in cerebral palsy: a randomised controlled trial. Dev Med Child Neurol. 1998;40.
McLaughlin JF, Bjornson KF, Temkin N, Steinbok P, Wright V, Reiner A, et al. Selective dorsal rhizotomy: meta-analysis of three randomized controlled trials. Dev Med Child Neurol. 2002;40:220–32.
Article
Google Scholar
Nordmark E, Josenby AL, Lagergren J, Andersson G, Strömblad LG, Westbom L. Long-term outcomes five years after selective dorsal rhizotomy. BMC Pediatr. 2008;8.
Tedroff K, Löwing K, Åström E. A prospective cohort study investigating gross motor function, pain, and health-related quality of life 17 years after selective dorsal rhizotomy in cerebral palsy. Dev Med Child Neurol. 2015;57.
Grunt S, Fieggen AG, Vermeulen RJ, Becher JG, Langerak NG. Selection criteria for selective dorsal rhizotomy in children with spastic cerebral palsy: a systematic review of the literature. Dev Med Child Neurol. 2014;56.
Abel MF, Damiano DL, Pannunzio M, Bush J. Muscle-tendon surgery in diplegic cerebral palsy: functional and mechanical changes. J Pediatr Orthop. 1999;19:366–75.
Article
CAS
PubMed
Google Scholar
Fry NR, Gough M, McNee AE, Shortland AP. Changes in the volume and length of the medial gastrocnemius after surgical recession in children with spastic diplegic cerebral palsy. J Pediatr Orthop. 2007;27:769–74. https://doi.org/10.1097/BPO.0b013e3181558943.
Article
PubMed
Google Scholar
Haberfehlner H, Jaspers RT, Rutz E, Harlaar J, Van Der Sluijs JA, Witbreuk MM, et al. Outcome of medial hamstring lengthening in children with spastic paresis: a biomechanical and morphological observational study. PLoS One. 2018;13.
Katalinic OM, Harvey LA, Herbert RD, Moseley AM, Lannin NA, Schurr K. Stretch for the treatment and prevention of contractures. Cochrane Database Syst Rev. 2010.
Gough M. Serial casting in cerebral palsy: panacea, placebo, or peril? Dev Med Child Neurol. 2007;49:725. https://doi.org/10.1111/j.1469-8749.2007.00725.x.
Article
PubMed
Google Scholar
Kalkman BM, Bar-On L, O’Brien TD, Maganaris CN. Stretching interventions in children with cerebral palsy: why are they ineffective in improving muscle function and how can we better their outcome? Front Physiol. 2020;11.
Hösl M, Böhm H, Arampatzis A, Döderlein L. Effects of ankle–foot braces on medial gastrocnemius morphometrics and gait in children with cerebral palsy. J Child Orthop. 2015;9:209–19. https://doi.org/10.1007/s11832-015-0664-x.
Article
PubMed
PubMed Central
Google Scholar
McNee AE, Gough M, Morrissey MC, Shortland AP. Increases in muscle volume after plantarflexor strength training in children with spastic cerebral palsy. Dev Med Child Neurol. 2009;51:429–35. https://doi.org/10.1111/j.1469-8749.2008.03230.x.
Article
PubMed
Google Scholar
Stackhouse SK, Binder-Macleod SA, Stackhouse CA, McCarthy JJ, Prosser LA, Lee SCK. Neuromuscular electrical stimulation versus volitional isometric strength training in children with spastic diplegic cerebral palsy: a preliminary study. Neurorehabil Neural Repair. 2007;21:475–85. https://doi.org/10.1177/1545968306298932.
Article
PubMed
PubMed Central
Google Scholar
Damiano DL, Prosser LA, Curatalo LA, Alter KE. Muscle plasticity and ankle control after repetitive use of a functional electrical stimulation device for foot drop in cerebral palsy. Neurorehabil Neural Repair. 2013;27:200–7. https://doi.org/10.1177/1545968312461716.
Article
PubMed
Google Scholar
Pool D, Elliott C, Bear N, Donnelly CJ, Davis C, Stannage K, et al. Neuromuscular electrical stimulation-assisted gait increases muscle strength and volume in children with unilateral spastic cerebral palsy. Dev Med Child Neurol. 2016;58:492–501. https://doi.org/10.1111/dmcn.12955.
Article
PubMed
Google Scholar
Gillett JG, Lichtwark GA, Boyd RN, Barber LA. Functional anaerobic and strength training in young adults with cerebral palsy. Med Sci Sports Exerc. 2018;50:1549–57. https://doi.org/10.1249/MSS.0000000000001614.
Article
PubMed
Google Scholar
Scholtes VA, Becher JG, Comuth A, Dekkers H, Van Dijk L, Dallmeijer AJ. Effectiveness of functional progressive resistance exercise strength training on muscle strength and mobility in children with cerebral palsy: a randomized controlled trial. Dev Med Child Neurol. 2010;52:107–13.
Article
Google Scholar
Moreau NG, Bodkin AW, Bjornson K, Hobbs A, Soileau M, Lahasky K. Effectiveness of rehabilitation interventions to improve gait speed in children with cerebral palsy: systematic review and Meta-analysis. Phys Ther. 2016;96.
Verschuren O, Ada L, Maltais DB, Gorter JW, Scianni A, Ketelaar M. Muscle strengthening in children and adolescents with spastic cerebral palsy: considerations for future resistance training protocols. Phys Ther. 2011;91:1130–9.
Article
PubMed
Google Scholar
Novak I, Mcintyre S, Morgan C, Campbell L, Dark L, Morton N, et al. A systematic review of interventions for children with cerebral palsy: state of the evidence. Dev Med Child Neurol. 2013;55:885–910.
Article
PubMed
Google Scholar
Booth ATC, Buizer AI, Meyns P, Oude Lansink ILB, Steenbrink F, van der Krogt MM. The efficacy of functional gait training in children and young adults with cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2018;60.
Einspieler C, Marschik PB, Bos AF, Ferrari F, Cioni G, Fr PH. Early markers for cerebral palsy: insights from the assessment of general movements. Futur Neurol. 2012;7:709–17. https://doi.org/10.2217/FNL.12.60.
Article
CAS
Google Scholar
Mills RJ, Parker BL, Monnot P, Needham E., Vivien CJ, Ferguson C, et al. Development of a human skeletal micro muscle platform with pacing capabilities. Biomaterials 2019;198 March 2018:217–227. https://doi.org/10.1016/j.biomaterials.2018.11.030.
Khuu S, Fernandez JW, Handsfield GG. A coupled Mechanobiological model of muscle regeneration in cerebral palsy. Front Bioeng. Biotechnol. 2021;9.