Court-Brown CM, Caesar B. Epidemiology of adult fractures: a review. Injury. 2006;37(8):691–7. https://doi.org/10.1016/j.injury.2006.04.130.
Article
Google Scholar
Larsen P, Elsoe R, Hansen SH, Graven-Nielsen T, Laessoe U, Rasmussen S. Incidence and epidemiology of tibial shaft fractures. Injury. 2015;46(4):746–50. https://doi.org/10.1016/j.injury.2014.12.027.
Article
PubMed
Google Scholar
Merchant TC, Dietz FR. Long-term follow-up after fractures of the tibial and fibular shafts. J Bone Joint Surg Am. 1989;71(4):599–606. https://doi.org/10.2106/00004623-198971040-00016.
Article
CAS
PubMed
Google Scholar
Theriault B, Turgeon AF, Pelet S. Functional impact of Tibial Malrotation following intramedullary nailing of Tibial shaft fractures. J Bone Joint Surg Am. 2012;94(22):2033–9. https://doi.org/10.2106/JBJS.K.00859.
Article
PubMed
Google Scholar
Laigle M, Rony L, Pinet R, Lancigu R, Steiger V, Hubert L. Intramedullary nailing for adult open tibial shaft fracture. An 85-case series. Orthop & Trauma: Surg. & Research. 2019;105(5):1021-24.
Jafarinejad A, Haghnegahdar M, Bakhshi H, Ghomeishi N. Malrotation following reamed intramedullary nailing of closed tibial fractures. Indian J Orthop. 2012;46(3):312. https://doi.org/10.4103/0019-5413.96395.
Article
PubMed
PubMed Central
Google Scholar
Puloski S, Romano C, Buckley R, Powell J. Rotational malalignment of the tibia following reamed intramedullary nail fixation. J Orthop Trauma. 2004;18(7):397–402. https://doi.org/10.1097/00005131-200408000-00001.
Article
CAS
PubMed
Google Scholar
Lefaivre KA, Guy P, Chan H, Blachut PA. Long-term follow-up of Tibial shaft fractures treated with intramedullary nailing. J Orthop Trauma. 2008;22(8):525–9. https://doi.org/10.1097/BOT.0b013e318180e646.
Article
PubMed
Google Scholar
Prasad CV, Khalid M, McCarthy P, O’Sullivan ME. CT assessment of torsion following locked intramedullary nailing of tibial fractures. Injury. 1999;30(7):467–70. https://doi.org/10.1016/S0020-1383(99)00132-1.
Article
CAS
PubMed
Google Scholar
Hicks J, Arnold A, Anderson F, Schwartz M, Delp S. The effect of excessive tibial torsion on the capacity of muscles to extend the hip and knee during single-limb stance. Gait Posture. 2007;26(4):546–52. https://doi.org/10.1016/j.gaitpost.2006.12.003.
Article
PubMed
PubMed Central
Google Scholar
Schwartz M, Lakin G. The effect of tibial torsion on the dynamic function of the soleus during gait. Gait Posture. 2003;17(2):113–8. https://doi.org/10.1016/S0966-6362(02)00058-9.
Article
PubMed
Google Scholar
Say F, Bülbül M. Findings related to rotational malalignment in tibial fractures treated with reamed intramedullary nailing. Arch Orthop Trauma Surg. 2014;134(10):1381–6. https://doi.org/10.1007/s00402-014-2052-2.
Article
PubMed
Google Scholar
Kenawey M, Liodakis E, Krettek C, Ostermeier S, Horn T, Hankemeier S. Effect of the lower limb rotational alignment on tibiofemoral contact pressure. Knee Surg Sports Traumatol Arthrosc. 2011;19(11):1851–9. https://doi.org/10.1007/s00167-011-1482-4.
Article
PubMed
Google Scholar
Svoboda MSJ, McHale CK, Belkoff SM, Cohen KS, Klemme LWR. The effects of Tibial Malrotation on the biomechanics of the Tibiotalar joint. Foot Ankle Int. 2002;23(2):102–6. https://doi.org/10.1177/107110070202300204.
Article
PubMed
Google Scholar
Clementz BG, Magnusson A. Fluoroscopic measurement of tibial torsion in adults. A comparison of three methods. Arch Orthop Trauma Surg. 1989;108(3):150–3. https://doi.org/10.1007/BF00934258.
Article
CAS
PubMed
Google Scholar
Bleeker NJ, Cain M, Rego M, Saarig A, Chan A, Sierevelt I, et al. Bilateral low-dose computed tomography assessment for post-operative rotational malalignment after intramedullary nailing for Tibial shaft fractures: reliability of a practical imaging technique. Injury. 2018;49(10):1895–900. https://doi.org/10.1016/j.injury.2018.07.031.
Article
PubMed
Google Scholar
Gösling T, Krettek C. Femurschaftfraktur. Notfall + Rettungsmedizin. 2019;22:159–75.
Article
Google Scholar
Krettek C, Miclau T, Grun O, Schandelmaier P, Tscherne H. Intraoperative control of axes, rotation and length in femoral and tibial fractures. Technical Note. Injury. 1998;29:29-39.
Zeckey C, Bogusch M, Borkovec M, Becker CA, Neuerburg C, Weidert S, et al. Radiographic cortical thickness parameters as predictors of rotational alignment in proximal femur fractures: a cadaveric study. J Orthop Res. 2019;37(1):69–76. https://doi.org/10.1002/jor.24166.
Article
PubMed
Google Scholar
Keppler AM, Küssner K, Suero EM, Kronseder V, Böcker W, Kammerlander C, Zeckey C, Neuerburg C. Intraoperative torsion control using the cortical step sign and diameter difference in tibial mid-shaft fractures. Eur J Trauma Emerg Surg. 2021. https://doi.org/10.1007/s00068-020-01566-z. Epub ahead of print.
Fang C, Gibson W, Lau TW, Fang B, Wong TM, Leung F. Important tips and numbers on using the cortical step and diameter difference sign in assessing femoral rotation - should we abandon the technique? Injury. 2015;46(7):1393–9. https://doi.org/10.1016/j.injury.2015.04.009.
Article
CAS
PubMed
Google Scholar
Eckhoff DG. Effect of limb malrotation on malalignment and osteoarthritis. Orthop Clin North Am. 1994;25(3):405–14. https://doi.org/10.1016/S0030-5898(20)31925-8.
Article
CAS
PubMed
Google Scholar
Turner MS. The association between tibial torsion and knee joint pathology. In: Clinical Orthopaedics and Related Research. New York LLC: Springer; 1994. p. 47–51.
Google Scholar
Skoog A, Söderqvist A, Törnkvist H, Ponzer S. One-year outcome after tibial shaft fractures: results of a prospective fracture registry. J Orthop Trauma. 2001;15(3):210–5. https://doi.org/10.1097/00005131-200103000-00011.
Article
CAS
PubMed
Google Scholar
Liporace FA, Stadler CM, Yoon RS. Problems, tricks, and pearls in intramedullary nailing of proximal third tibial fractures. J Orthop Trauma. 2013;27(1):56–62. https://doi.org/10.1097/BOT.0b013e318250f041.
Article
PubMed
Google Scholar
Zeckey C, Monsell F, Jackson M, Mommsen P, Citak M, Krettek C, et al. Femoral malrotation after surgical treatment of femoral shaft fractures in children: a retrospective CT-based analysis. Eur J Orthop Surg Traumatol. 2017;27(8):1157–62. https://doi.org/10.1007/s00590-017-1978-9.
Article
PubMed
Google Scholar
Guo J, Zhang Y, Hou Z, Li Z. A tip to reduce the malrotation of the spiral tibial fracture intraoperatively. Eur J Orthop Surg Traumatol. 2014;24(8):1617–23. https://doi.org/10.1007/s00590-014-1411-6.
Article
PubMed
Google Scholar
Inci F, Yildirim AO, Ciliz DS, Kocak C, Ceyhan E, Öken ÖF. Intraoperative rotation control in closed intramedullary nailing in tibia diaphyseal fractures: a prospective, randomised study. Acta Orthop Belg. 2018;84(4):461–8.
PubMed
Google Scholar
Takase K, Lee SY, Waki T, Fukui T, Oe K, Matsumoto T, et al. Minimally invasive treatment for Tibial Malrotation after locked intramedullary nailing. Case Rep Orthop. 2018;2018:4190670.
PubMed
PubMed Central
Google Scholar
Hakimian D, Khoury A, Mosheiff R, Liebergall M, Weil YA. Radiographic markers for measuring tibial rotation based on CT-reconstructed radiographs: an accuracy and feasibility study. Skelet Radiol. 2018;47(4):483–90. https://doi.org/10.1007/s00256-017-2810-7.
Article
Google Scholar
Tung T, Tufescu T. The cortical step sign fails to prevent malrotation of a nailed femoral shaft fracture: a case report. Case Rep Orthop. 2014;2014:301723.
PubMed
PubMed Central
Google Scholar
Langer JS, Gardner MJ, Ricci WM. The cortical step sign as a tool for assessing and correcting rotational deformity in femoral shaft fractures. J Orthop Trauma. 2010;24(2):82–8. https://doi.org/10.1097/BOT.0b013e3181b66f96.
Article
PubMed
Google Scholar