Jones IE, Williams SM, Dow N, Goulding A. How many children remain fracture-free during growth? a longitudinal study of children and adolescents participating in the Dunedin Multidisciplinary Health and Development Study. Osteoporosis Int. 2002;13(12):990–5.
Landin LA. Epidemiology of children’s fractures. Journal of pediatric orthopedics Part B. 1997;6(2):79–83.
Article
CAS
Google Scholar
Hedström EM, Svensson O, Bergström U, Michno P. Epidemiology of fractures in children and adolescents. Acta orthopaedica. 2010;81(1):148–53.
Article
Google Scholar
Cooper C, Dennison EM, Leufkens HG, Bishop N, van Staa TP. Epidemiology of childhood fractures in Britain: a study using the general practice research database. J Bone Miner Res. 2004;19(12):1976–81.
Article
Google Scholar
Rodríguez-Merchán EC. Pediatric Fractures of the Forearm. Clin Orthop Relat Res. 2005;432:65–72. https://doi.org/10.1097/01.blo.0000156480.76450.04.
Ryan LM, Teach SJ, Searcy K, Singer SA, Wood R, Wright JL, et al. Epidemiology of pediatric forearm fractures in Washington, DC. The Journal of trauma. 2010;69(4 Suppl):S200-5.
PubMed
Google Scholar
Magarey AM, Boulton TJ, Chatterton BE, Schultz C, Nordin BE, Cockington RA. Bone growth from 11 to 17 years: relationship to growth, gender and changes with pubertal status including timing of menarche. Acta Paediatrica (Oslo, Norway: 1992). 1999;88(2):139 – 46.
Mayranpaa MK, Makitie O, Kallio PE. Decreasing incidence and changing pattern of childhood fractures: A population-based study. J Bone Miner Res. 2010;25(12):2752–9.
Article
Google Scholar
Mellstrand-Navarro C, Pettersson HJ, Tornqvist H, Ponzer S. The operative treatment of fractures of the distal radius is increasing: results from a nationwide Swedish study. The bone & joint journal. 2014;96-b(7):963–9.
Article
CAS
Google Scholar
Handoll HH, Elliott J, Iheozor-Ejiofor Z, Hunter J, Karantana A. Interventions for treating wrist fractures in children. Cochrane database of systematic reviews (Online). 2018;12(12):Cd012470.
Google Scholar
Pannu GS, Herman M. Distal radius-ulna fractures in children. The Orthopedic clinics of North America. 2015;46(2):235–48.
Article
Google Scholar
Elinder LS, Heinemans N, Zeebari Z, Patterson E. Longitudinal changes in health behaviours and body weight among Swedish school children–associations with age, gender and parental education–the SCIP school cohort. BMC Public Health. 2014;14:640.
Article
Google Scholar
de Putter CE, van Beeck EF, Looman CW, Toet H, Hovius SE, Selles RW. Trends in wrist fractures in children and adolescents, 1997–2009. The Journal of hand surgery. 2011;36(11):1810-5.e2.
Article
Google Scholar
Khosla S, Melton LJ, 3rd, Dekutoski MB, Achenbach SJ, Oberg AL, Riggs BL. Incidence of childhood distal forearm fractures over 30 years: a population-based study. Jama. 2003;290(11):1479–85.
Article
CAS
Google Scholar
Mamoowala N, Johnson NA, Dias JJ. Trends in paediatric distal radius fractures: an eight-year review from a large UK trauma unit. Ann R Coll Surg Engl. 2019;101(4):297–303.
Article
CAS
Google Scholar
Socialstyrelsen. Available from: https://www.socialstyrelsen.se/en/. Accessed 21 Feb 2019.
Ludvigsson JF, Andersson E, Ekbom A, Feychting M, Kim JL, Reuterwall C, et al. External review and validation of the Swedish national inpatient register. BMC Public Health. 2011;11:450.
Article
Google Scholar
Statistics Sweden 2018. Available from: http://www.statistikdatabasen.scb.se/pxweb/en/ssd/. Accessed 21 Feb 2019.
Kanis JA, Odén A, McCloskey EV, Johansson H, Wahl DA, Cooper C. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporosis Int. 2012;23(9):2239–56.
Jerrhag D, Englund M, Petersson I, Lempesis V, Landin L, Karlsson MK, et al. Increasing wrist fracture rates in children may have major implications for future adult fracture burden. Acta orthopaedica. 2016;87(3):296–300.
Article
Google Scholar
Park MS, Chung CY, Choi IH, Kim TW, Sung KH, Lee SY, et al. Incidence patterns of pediatric and adolescent orthopaedic fractures according to age groups and seasons in South Korea: a population-based study. Clin Orthop Surg. 2013;5(3):161–6.
Article
Google Scholar
Körner D, Gonser CE, Bahrs C, Hemmann P. Change in paediatric upper extremity fracture incidences in German hospitals from 2002 to 2017: an epidemiological study. Archives of orthopaedic and trauma surgery. 2020;140(7):887–94.
Article
Google Scholar
Janssen I, Leblanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40.
Article
Google Scholar
Clark EM, Ness AR, Tobias JH. Vigorous physical activity increases fracture risk in children irrespective of bone mass: a prospective study of the independent risk factors for fractures in healthy children. J Bone Miner Res. 2008;23(7):1012–22.
Article
Google Scholar
Detter FT, Rosengren BE, Dencker M, Nilsson J, Karlsson MK. A 5-year exercise program in pre- and peripubertal children improves bone mass and bone size without affecting fracture risk. Calcified tissue international. 2013;92(4):385–93.
Article
CAS
Google Scholar
Moon RJ, Lim A, Farmer M, Segaran A, Clarke NM, Dennison EM, et al. Differences in childhood adiposity influence upper limb fracture site. Bone. 2015;79:88–93.
Article
Google Scholar
Manning Ryan L, Teach SJ, Searcy K, Singer SA, Wood R, Wright JL, et al. The Association Between Weight Status and Pediatric Forearm Fractures Resulting From Ground-Level Falls. Pediatric emergency care. 2015;31(12):835–8.
Article
Google Scholar