Smith JW, Chalupa P, Shabaz HM. Infectious arthritis: clinical features, laboratory findings and treatment. Clin Microbiol Infect. 2006;12(4):309–14. https://doi.org/10.1111/j.1469-0691.2006.01366.x.
Article
CAS
PubMed
Google Scholar
Mathews CJ, Weston VC, Jones A, Field M, Coakley G. Bacterial septic arthritis in adults. Lancet. 2010;375:846–55.
Article
PubMed
Google Scholar
Lynn MM, Mathews CJ. Advances in the management of bacterial septic arthritis. Int J Clin Rheumatol. 2012;7(3):335–42.
Article
CAS
Google Scholar
Abram SGF, Alvand A, Judge A, Beard DJ, Price AJ. Mortality and adverse joint outcomes following septic arthritis of the native knee: a longitudinal cohort study of patients receiving arthroscopic washout. Lancet Infect Dis. 2020;20(3):341–9. https://doi.org/10.1016/S1473-3099(19)30419-0.
Article
PubMed
Google Scholar
Kwan Tat S, Padrines M, Théoleyre S, Heymann D, Fortun Y. IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev. 2004;15(1):49–60. https://doi.org/10.1016/j.cytogfr.2003.10.005.
Article
CAS
PubMed
Google Scholar
Corrado A, Donato P, Maccari S, Cecchi R, Spadafina T, Arcidiacono L, et al. Staphylococcus aureus-dependent septic arthritis in murine knee joints: local immune response and beneficial effects of vaccination. Sci Rep. 2016;6:38043. https://doi.org/10.1038/srep38043.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mathews CJ, Kingsley G, Field M, et al. Management of septic arthritis: a systematic review. Ann Rheum Dis. 2007;66(4):440–5. https://doi.org/10.1136/ard.2006.058909.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller A, Abduljabbar F, Jarzem P. Polyarticular Septic Arthritis in an Immunocompetent Adult: A Case Report and Review of the Literature. Case Rep Orthop. 2015;2015:602137. https://doi.org/10.1155/2015/602137.
Article
PubMed
PubMed Central
Google Scholar
Shirtliff ME, Mader JT. Acute septic arthritis. Clin Microbiol Rev. 2002;15(4):527–44. https://doi.org/10.1128/cmr.15.4.527-544.2002.
Article
PubMed
PubMed Central
Google Scholar
Dubost JJ, Soubrier M, De Champs C, Ristori JM, Bussiére JL, Sauvezie B. No changes in the distribution of organisms responsible for septic arthritis over a 20 year period. Ann Rheum Dis. 2002;61(3):267–9. https://doi.org/10.1136/ard.61.3.267.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaandorp CJ, Van Schaardenburg D, Krijnen P, Habbema JD, van de Laar MA. Risk factors for septic arthritis in patients with joint disease. A prospective study. Arthritis Rheum. 1995;38(12):1819–25. https://doi.org/10.1002/art.1780381215.
Article
CAS
PubMed
Google Scholar
Kherani RB, Shojania K. Septic arthritis in patients with pre-existing inflammatory arthritis [published correction appears in CMAJ. 2007;177(5):489]. CMAJ. 2007;176(11):1605–8. https://doi.org/10.1503/cmaj.050258.
Article
PubMed
PubMed Central
Google Scholar
Elsissy JG, Liu JN, Wilton PJ, Nwachuku I, Gowd AK, Amin NH. Bacterial Septic Arthritis of the Adult Native Knee Joint: A Review. JBJS Rev. 2020;8(1):e0059. https://doi.org/10.2106/JBJS.RVW.19.00059.
Article
PubMed
Google Scholar
Carpenter CR, Schuur JD, Everett WW, Pines JM. Evidence-based diagnostics: adult septic arthritis. Acad Emerg Med. 2011;18:781.
Article
PubMed
PubMed Central
Google Scholar
Costales C, Butler-Wu SM. A Real Pain: Diagnostic Quandaries and Septic Arthritis. J Clin Microbiol. 2018;56(2):e01358–17. https://doi.org/10.1128/JCM.01358-17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaandorp CJ, Krijnen P, Moens HJ, Habbema JD, van Schaardenburg D. The outcome of bacterial arthritis: a prospective community-based study. Arthritis Rheum. 1997;40(5):884–92. https://doi.org/10.1002/art.1780400516.
Article
CAS
PubMed
Google Scholar
Jung SW, Kim DH, Shin SJ, Kang BY, Eho YJ, Yang SW. Septic arthritis associated with systemic sepsis. Int Orthop. 2018;42(1):1–7. https://doi.org/10.1007/s00264-017-3565-4.
Article
PubMed
Google Scholar
Al-Ahaideb A. Septic arthritis in patients with rheumatoid arthritis. J Orthop Surg Res. 2008;3:33. https://doi.org/10.1186/1749-799X-3-33.
Article
PubMed
PubMed Central
Google Scholar
Minguez S, Molinos S, Mateo L. Septic arthritis due to methicillin-resistant Staphylococcus aureus in adults. Reumatol Clin. 2015;11(November-December (6)):381–386
Ho G. Bacterial arthritis. Curr Opin Rheumatol. 2001;12:310–4.
Article
Google Scholar
Mathews CJ, Coakley G. Septic arthritis: current diagnostic and therapeutic algorithm. Curr Opin Rheumatol. 2008;20(4):457–62. https://doi.org/10.1097/BOR.0b013e3283036975.
Article
CAS
PubMed
Google Scholar
Lidgren L. Septic arthritis and osteomyelitis. In: Hochberg MC, Silman AJ, Smolen JS, et al., editors. Rheumatology. Toronto: Mosby; 2003:1055-1066.
Nade S. Septic arthritis. Best Pract Res Clin Rheumatol. 2003;17(2):183–200. https://doi.org/10.1016/s1521-6942(02)00106-7.
Article
PubMed
Google Scholar
Stoodley P, Ehrlich GD, Sedghizadeh PP, et al. Orthopaedic biofilm infections. Curr Orthop Pract. 2011;22(6):558–63. https://doi.org/10.1097/BCO.0b013e318230efcf.
Article
PubMed
PubMed Central
Google Scholar
Clerc O, Prod'hom G, Greub G, Zanetti G, Senn L. Adult native septic arthritis: a review of 10 years of experience and lessons for empirical antibiotic therapy. J Antimicrob Chemother. 2011;66(5):1168–73. https://doi.org/10.1093/jac/dkr047.
Article
CAS
PubMed
Google Scholar
Okano T, Enokida M, Otsuki R, Hagino H, Teshima R. Recent trends in adult-onset septic arthritis of the knee and hip: retrospective analysis of patients treated during the past 50 years. J Infect Chemother. 2011;17(5):666–70. https://doi.org/10.1007/s10156-011-0244-z.
Article
PubMed
Google Scholar
Giannoudis PV, Parker J, Wilcox MH. Methicillin-resistant Staphylococcus aureus in trauma and orthopaedic practice. J Bone Joint Surg Br. 2005;87(6):749–54. https://doi.org/10.1302/0301-620X.87B6.16292.
Article
CAS
PubMed
Google Scholar
Patel A, Calfee RP, Plante M, Fischer SA, Arcand N, Born C. Methicillin-resistant Staphylococcus aureus in orthopaedic surgery. J Bone Joint Surg Br. 2008;90(11):1401–6. https://doi.org/10.1302/0301-620X.90B11.20771.
Article
CAS
PubMed
Google Scholar
Latha T, Anil B, Manjunatha H, Chiranjay M, Elsa D, Baby N, et al. MRSA: the leading pathogen of orthopedic infection in a tertiary care hospital, South India. Afr Health Sci. 2019;19(1):1393–401. https://doi.org/10.4314/ahs.v19i1.12.
Article
PubMed
PubMed Central
Google Scholar
Ross JJ, Davidson L. Methicillin-resistant Staphylococcus aureus septic arthritis: an emerging clinical syndrome. Rheumatology (Oxford). 2005;44(9):1197–8. https://doi.org/10.1093/rheumatology/kei035.
Article
CAS
PubMed
Google Scholar
Al-Nammari SS, Bobak P, Venkatesh R. Methicillin resistant Staphylococcus aureus versus methicillin sensitive Staphylococcus aureus adult haematogenous septic arthritis. Arch Orthop Trauma Surg. 2007;127(7):537–42.
Article
PubMed
Google Scholar
Combs K, Cox K. Clinical outcomes involving patients that develop septic arthritis with methicillin sensitive Staphylococcus aureus versus methicillin resistant Staphylococcus aureus. J Orthop. 2017;15(1):9–12.
Article
PubMed
PubMed Central
Google Scholar
Herold BC, Immergluck LC, Maranan MC, Lauderdale DS, Gaskin RE, Boyle-Vavra S, et al. Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk. JAMA. 1998;279(8):593–8. https://doi.org/10.1001/jama.279.8.593.
Article
CAS
PubMed
Google Scholar
Martínez-Aguilar G, Avalos-Mishaan A, Hulten K, Hammerman W, Mason EO Jr, Kaplan SL. Community-acquired, methicillin-resistant and methicillin-susceptible Staphylococcus aureus musculoskeletal infections in children. Pediatr Infect Dis J. 2004;23(8):701–6. https://doi.org/10.1097/01.inf.0000133044.79130.2a.
Article
PubMed
Google Scholar
Arnold SR, Elias D, Buckingham SC, Thomas ED, Novais E, Arkader A, et al. Changing patterns of acute hematogenous osteomyelitis and septic arthritis: emergence of community-associated methicillin-resistant Staphylococcus aureus. J Pediatr Orthop. 2006;26(6):703–8. https://doi.org/10.1097/01.bpo.0000242431.91489.b4.
Article
PubMed
Google Scholar
Naimi TS, LeDell KH, Como-Sabetti K, Borchardt SM, Boxrud DJ, Etienne J, et al. Comparison of community- and health care-associated methicillin-resistant Staphylococcus aureus infection. JAMA. 2003;290(22):2976–84. https://doi.org/10.1001/jama.290.22.2976 PMID: 14665659.
Article
CAS
PubMed
Google Scholar
Millar BC, Loughrey A, Elborn JS, Moore JE. Proposed definitions of community-associated meticillin-resistant Staphylococcus aureus (CA-MRSA). J Hosp Infect. 2007;67(2):109–13. https://doi.org/10.1016/j.jhin.2007.06.003.
Article
CAS
PubMed
Google Scholar
Krieg AM. A possible cause of joint destruction in septic arthritis. Arthritis Res Ther. 1999;1:3.
Article
CAS
Google Scholar
Colavite PM, Sartori A. Septic arthritis: immunopathogenesis, experimental models and therapy. J Venom Anim Toxins Incl Trop Dis. 2014;20:19. https://doi.org/10.1186/1678-9199-20-19.
Article
PubMed
PubMed Central
Google Scholar
Boff D, Crijns H, Teixeira MM, Amaral FA, Proost P. Neutrophils: Beneficial and Harmful Cells in Septic Arthritis. Int J Mol Sci. 2018;19(2):468. https://doi.org/10.3390/ijms19020468.
Article
CAS
PubMed Central
Google Scholar
Garcia-De La Torre I. Advances in the management of septic arthritis. Rheum Dis Clin North Am. 2003;29(1):61–75. https://doi.org/10.1016/s0889-857x(02)00080-7.
Article
PubMed
Google Scholar
Long B, Koyfman A, Gottlieb M. Evaluation and Management of Septic Arthritis and its Mimics in the Emergency Department. West J Emerg Med. 2019;20(2):331–41. https://doi.org/10.5811/westjem.2018.10.40974.
Article
PubMed
Google Scholar
Ross K, Mehr J, Carothers B, Greeley R, Benowitz I, McHugh L, et al. Outbreak of septic arthritis associated with intra-articular injections at an outpatient practice - New Jersey, 2017. MMWR Morb Mortal Wkly Rep. 2017;66(29):777–9. https://doi.org/10.15585/mmwr.mm6629a3.
Article
PubMed
PubMed Central
Google Scholar
Tarkowski A. Infection and musculoskeletal conditions: Infectious arthritis. Best Pract Res Clin Rheumatol. 2006;20(6):1029–44. https://doi.org/10.1016/j.berh.2006.08.001.
Article
CAS
PubMed
Google Scholar
Haywood L, Walsh DA. Vasculature of the normal and arthritic synovial joint. Histol Histopathol. 2001;16:277–84.
CAS
PubMed
Google Scholar
Goldenberg DL. Septic arthritis. Lancet. 1998;351(9097):197–202. https://doi.org/10.1016/S0140-6736(97)09522-6.
Article
CAS
PubMed
Google Scholar
Hasan S, Smith JW. Septic arthritis. Curr Treat Options Infect Dis. 2001;3:279–86.
Google Scholar
Horst SA, Hoerr V, Beineke A, Kreis C, Tuchscherr L, Kalinka J, et al. A novel mouse model of Staphylococcus aureus chronic osteomyelitis that closely mimics the human infection: an integrated view of disease pathogenesis. Am J Pathol. 2012;181(4):1206–14. https://doi.org/10.1016/j.ajpath.2012.07.005.
Article
PubMed
Google Scholar
Foster TJ, Geoghegan JA, Ganesh VK, Hook M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol. 2014;12:49–62. https://doi.org/10.1038/nrmicro3161.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arciola CR, Campoccia D, Ehrlich GD, Montanaro L. Biofilm-based implant infections in orthopaedics. Adv Exp Med Biol. 2015;830:29–46.
Article
PubMed
Google Scholar
Kim M, Zhao A, Wang A et al. 2017.Surface-attached molecules control Staphylococcus aureus quorum sensing and biofilm development. Nat Microbiol 2, 17080. https://doi.org/https://doi.org/10.1038/nmicrobiol.2017.80
Biswas R, Voggu L, Simon UK, Hentschel P, Thumm G, Gotz F. Activity of the major staphylococcal autolysin Atl. FEMS Microbiol Lett. 2006;259:260–8.
Article
CAS
PubMed
Google Scholar
Campoccia D, Speziale P, Ravaioli S, et al. The presence of both bone sialoprotein-binding protein gene and collagen adhesin gene as a typical virulence trait of the major epidemic cluster in isolates from orthopedic implant infections. Biomaterials. 2009;30:6621–8. https://doi.org/10.1016/j.biomaterials.2009.08.032.
Article
CAS
PubMed
Google Scholar
Switalski LM, Butcher WG, Caufield PC, Lantz MS. Collagen mediates adhesion of Streptococcus mutans to human dentin. Infect Immun. 1993;61:4119–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryding U, Flock JI, Flock M, Soderquist B, Christensson B. Expression of collagen-binding protein and types 5 and 8 capsular polysaccharide in clinical isolates of Staphylococcus aureus. J Infect Dis. 1997;176:1096–9.
Article
CAS
PubMed
Google Scholar
Nilsson IM, Hartford O, Foster T, Tarkowski A. Alpha-toxin and gamma-toxin jointly promote Staphylococcus aureus virulence in murine septic arthritis. Infect. Immun. 1999;67:1045–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perez K, Patel R. Survival of Staphylococcus epidermidis in Fibroblasts and Osteoblasts. Infect Immun. 2018;86(10):e00237–18. https://doi.org/10.1128/IAI.00237-18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dastgheyb S, Parvizi J, Shapiro IM, Hickok NJ, Otto M. Effect of biofilms on recalcitrance of staphylococcal joint infection to antibiotic treatment. J Infect Dis. 2015;211(4):641–50. https://doi.org/10.1093/infdis/jiu514.
Article
CAS
PubMed
Google Scholar
Gilbertie JM, Schaer TP, Schubert AG, Jacob ME, Menegatti S, Ashton Lavoie R, et al. Platelet-rich plasma lysate displays anti-biofilm properties and restores antimicrobial activity against synovial fluid biofilms in vitro. J Orthop Res. 2020;38(6):1365–74. https://doi.org/10.1002/jor.24584.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pestrak MJ, Gupta TT, Dusane DH, et al. Investigation of synovial fluid induced Staphylococcus aureus aggregate development and its impact on surface attachment and biofilm formation [published correction appears in PLoS One. 2020 May 14;15(5):e0233534]. PLoS One. 2020;15(4):e0231791. https://doi.org/10.1371/journal.pone.0231791.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sendi P, Rohrbach M, Graber P, Frei R, Ochsner PE, Zimmerli W. Staphylococcus aureus small colony variants in prosthetic joint infection. Clin Infect Dis. 2006;43(8):961–7.
Article
PubMed
Google Scholar
McConoughey SJ, Howlin R, Granger JF, et al. Biofilms in periprosthetic orthopedic infections [published correction appears in Future Microbiol. 2014; 9(10):1234]. Future Microbiol. 2014;9(8):987–1007.
Article
CAS
PubMed
Google Scholar
Proctor RA, Kriegeskorte A, Kahl BC, Becker K, Löffler B, Peters G. Staphylococcus aureus Small Colony Variants (SCVs): a road map for the metabolic pathways involved in persistent infections. Front Cell Infect Microbiol. 2014;4:99. https://doi.org/10.3389/fcimb.2014.00099.
Article
PubMed
PubMed Central
Google Scholar
Kahl BC, Becker K, Loffler B. Clinical significance and pathogenesis of staphylococcal small colony variants in persistent infections. Clin. Microbiol. Rev. 2016;29:401–27. https://doi.org/10.1128/CMR.00069-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moriarty TF, Kuehl R, Coenye T, et al. Orthopaedic device-related infection: current and future interventions for improved prevention and treatment. EFORT Open Rev. 2016;1(4):89–99. https://doi.org/10.1302/2058-5241.1.000037.
Article
PubMed
PubMed Central
Google Scholar
Josse J, Valour F, Maali Y, et al. Interaction Between Staphylococcal Biofilm and Bone: How Does the Presence of Biofilm Promote Prosthesis Loosening? Front Microbiol. 2019;10:1602. https://doi.org/10.3389/fmicb.2019.01602.
Article
PubMed
PubMed Central
Google Scholar
Abdelnour A, Bremell T, Holmdahl R, Tarkowski A. Clonal expansion of T lymphocytes causes arthritis and mortality in mice infected with toxic shock syndrome toxin-1-producing staphylococci. Eur J Immunol. 1994;24(5):1161–6. https://doi.org/10.1002/eji.1830240523.
Article
CAS
PubMed
Google Scholar
Colavite-Machado PM, Ishikawa LL, França TG, Zorzella-Pezavento SF, da Rosa LC, Chiuso-Minicucci F, et al. Differential arthritogenicity of Staphylococcus aureus strains isolated from biological samples. BMC Infect Dis. 2013;13:400. https://doi.org/10.1186/1471-2334-13-400.
Article
PubMed
PubMed Central
Google Scholar
Smith IDM, Milto KM, Doherty CJ, Amyes SGB, Simpson AHRW, Hall AC. A potential key role for alpha-haemolysin of Staphylococcus aureus in mediating chondrocyte death in septic arthritis. Bone Joint Res. 2018;7(7):457–67. https://doi.org/10.1302/2046-3758.77.BJR-2017-0165.R1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dohin B, Gillet Y, Kohler R, Lina G, Vandenesch F, Vanhems P, et al. Pediatric bone and joint infections caused by Panton-Valentine leukocidin-positive Staphylococcus aureus. Pediatr Infect Dis J. 2007;26(11):1042–8. https://doi.org/10.1097/INF.0b013e318133a85e.
Article
PubMed
Google Scholar
Crémieux AC, Dumitrescu O, Lina G, Vallee C, Côté JF, Muffat-Joly M, et al. Panton-valentine leukocidin enhances the severity of community-associated methicillin-resistant Staphylococcus aureus rabbit osteomyelitis. PLoS One. 2009;4(9):e7204. https://doi.org/10.1371/journal.pone.0007204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dodwell ER. Osteomyelitis and septic arthritis in children: current concepts. Curr Opin Pediatr. 2013;25(1):58–63.
Article
CAS
PubMed
Google Scholar
Janssens S, Beyaert R. Role of Toll-like receptors in pathogen recognition. Clin Microbiol Rev. 2003;16(4):637–46. https://doi.org/10.1128/cmr.16.4.637-646.2003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Papathanasiou I, Malizos KN, Poultsides L. The catabolic role of toll-like receptor 2 (TLR-2) mediated by the NF-kB pathway in septic arthritis. J Orthop Res. 2011;29(2):247–51.
Article
CAS
PubMed
Google Scholar
Oliveira-Nascimento L, Massari P, Wetzler LM. The role of TLR2 in infection and immunity. Front Immun. 2012;3:79. https://doi.org/10.3389/fimmu.2012.00079.
Article
Google Scholar
Bremell T, Tarkowski A. Preferential induction of septic arthritis and mortality by superantigen-producing staphylococci. Infect. Immun. 1995;63:4185–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tarkowski A, Bokarewa M, Collins LV, Gjertsson I, Hultgren OH, Jin T, et al. Current status of pathogenetic mechanisms in staphylococcal arthritis. FEMS Microbiol Letters. 2002;217:125–32.
Article
CAS
Google Scholar
Kanangat S, Postlethwaite A, Hasty K, et al. Induction of multiple matrix metalloproteinases in human dermal and synovial fibroblasts by Staphylococcus aureus: implications in the pathogenesis of septic arthritis and other soft tissue infections. Arthritis Res Ther. 2006;8(6):R176. https://doi.org/10.1186/ar2086.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nair R, Schweizer ML, Singh N. Septic Arthritis and Prosthetic Joint Infections in Older Adults. Infect Dis Clin North Am. 2017;31(4):715–29. https://doi.org/10.1016/j.idc.2017.07.013.
Article
PubMed
Google Scholar
Mitchell M, Howard B, Haller J, Sartoris DJ, Resnick D. Septic arthritis. Radiol. Clin. North Am. 1988;26:1295–313.
Article
CAS
PubMed
Google Scholar
Diamond G, Beckloff N, Weinberg A, Kisich KO. The roles of antimicrobial peptides in innate host defense. Curr Pharm Des. 2009;15(21):2377–92. https://doi.org/10.2174/138161209788682325\.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol. 2012;32(2):143–71. https://doi.org/10.3109/07388551.2011.594423.
Article
CAS
PubMed
Google Scholar
Riool M, de Breij A, Drijfhout JW, Nibbering PH, Zaat SAJ. Antimicrobial Peptides in Biomedical Device Manufacturing. Front Chem. 2017;5:63.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mwangi J, Hao X, Lai R, Zhang ZY. Antimicrobial peptides: new hope in the war against multidrug resistance. Zool Res. 2019;40(6):488–505. https://doi.org/10.24272/j.issn.2095-8137.2019.062.
Article
PubMed
PubMed Central
Google Scholar
Bahar AA, Ren D. Antimicrobial peptides. Pharmaceuticals (Basel). 2013;6(12):1543–75. https://doi.org/10.3390/ph6121543.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moravej H, Moravej Z, Yazdanparast M, Heiat M, Mirhosseini A, Moosazadeh Moghaddam M, et al. Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria. Microb Drug Resist. 2018;24(6):747–67. https://doi.org/10.1089/mdr.2017.0392.
Article
CAS
PubMed
Google Scholar
Lei J, Sun L, Huang S, et al. The antimicrobial peptides and their potential clinical applications. Am J Transl Res. 2019;11(7):3919–31.
CAS
PubMed
PubMed Central
Google Scholar
Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. 2011;29:464–72. https://doi.org/10.1016/j.tibtech.2011.05.001.
Guilhelmelli F, Vilela N, Albuquerque P, Derengowski Lda S, Silva-Pereira I, Kyaw CM. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol. 2013;4:353. https://doi.org/10.3389/fmicb.2013.00353.
Le CF, Fang CM, Sekaran SD. Intracellular Targeting Mechanisms by Antimicrobial Peptides. Antimicrob Agents Chemother. 2017;61(4):e02340–16. https://doi.org/10.1128/AAC.02340-16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hancock RE, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 2006;24:1551–7. https://doi.org/10.1038/nbt1267.
Article
CAS
PubMed
Google Scholar
Mahlapuu M, Hakansson J, Ringstad L, Björn C. Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol. 2016;6:194.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kang HK, Lee HH, Seo CH, Park Y. Antimicrobial and immunomodulatory properties and applications of marine-derived proteins and peptides. Mar Drugs. 2019;17(6):350. https://doi.org/10.3390/md17060350.
Article
CAS
PubMed Central
Google Scholar
Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, et al. Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science. 1999;286(5439):525–8. https://doi.org/10.1126/science.286.5439.525.
Article
CAS
PubMed
Google Scholar
Tjabringa GS, Aarbiou J, Ninaber DK, Drijfhout JW, Sørensen OE, Borregaard N, et al. The antimicrobial peptide LL-37 activates innate immunity at the airway epithelial surface by transactivation of the epidermal growth factor receptor. J Immunol. 2003;171(12):6690–6. https://doi.org/10.4049/jimmunol.171.12.6690.
Article
CAS
PubMed
Google Scholar
Agier J, Efenberger M, Brzezińska-Błaszczyk E. Cathelicidin impact on inflammatory cells. Cent Eur J Immunol. 2015;40(2):225–35. https://doi.org/10.5114/ceji.2015.51359.
Article
PubMed
PubMed Central
Google Scholar
Mookherjee N, Brown KL, Bowdish DM, Doria S, Falsafi R, Hokamp K, et al. Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J Immunol. 2006;176(4):2455–64. https://doi.org/10.4049/jimmunol.176.4.2455.
Article
CAS
PubMed
Google Scholar
Ganguly D, Chamilos G, Lande R, Gregorio J, Meller S, Facchinetti V, et al. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med. 2009;206(9):1983–94. https://doi.org/10.1084/jem.20090480.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang W, Diana J. The Dual Role of Antimicrobial Peptides in Autoimmunity. Front Immunol. 2020;11:2077. https://doi.org/10.3389/fimmu.2020.02077.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mattsby-Baltzer I, Roseanu A, Motas C, Elverfors J, Engberg I, Hanson LA. Lactoferrin or a fragment thereof inhibits the endotoxin-induced interleukin-6 response in human monocytic cells. Pediatr. Res. 1996;40:257–62. https://doi.org/10.1203/00006450-199608000-00011.
Article
CAS
PubMed
Google Scholar
Bowdish DM, Davidson DJ, Scott MG, Hancock RE. Immunomodulatory activities of small host defense peptides. Antimicrob Agents Chemother. 2005;49(5):1727–32. https://doi.org/10.1128/AAC.49.5.1727-1732.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu BC, Lee AH, Hancock REW. Mechanisms of the innate defense regulator peptide-1002 anti-inflammatory activity in a sterile inflammation mouse model. J Immunol. 2017;199(10):3592–603. https://doi.org/10.4049/jimmunol.1700985.
Article
CAS
PubMed
Google Scholar
Levast B, Hogan D, van Kessel J, et al. synthetic cationic peptide idr-1002 and human cathelicidin ll37 modulate the cell innate response but differentially impact PRRSV replication in vitro. Front Vet Sci. 2019;6:233. https://doi.org/10.3389/fvets.2019.00233.
Article
PubMed
PubMed Central
Google Scholar
Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009;30(3):131–41. https://doi.org/10.1016/j.it.2008.12.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shao C, Li W, Tan P, Shan A, Dou X, Ma D, et al. Symmetrical modification of minimized dermaseptins to extend the spectrum of antimicrobials with endotoxin neutralization potency. Int J Mol Sci. 2019;20(6):1417. https://doi.org/10.3390/ijms20061417.
Article
CAS
PubMed Central
Google Scholar
Reffuveille F, de la Fuente-Núñez C, Mansour S, Hancock RE. A broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms. Antimicrob Agents Chemother. 2014;58(9):5363–71.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lewies A, Du Plessis LH, Wentzel JF. Antimicrobial peptides: the achilles' heel of antibiotic resistance? Probiot. Antimicrob. Proteins. 2018;11:370–81. https://doi.org/10.1007/s12602-018-9465-0.
Article
CAS
Google Scholar
Varoga D, Klostermeier E, Paulsen F, Wruck C, Lippross S, Brandenburg LO, et al. The antimicrobial peptide HBD-2 and the Toll-like receptors-2 and -4 are induced in synovial membranes in case of septic arthritis. Virchows Arch. 2009;454(6):685–94. https://doi.org/10.1007/s00428-009-0780-4.
Article
CAS
PubMed
Google Scholar
Paulsen F, Pufe T, Conradi L, et al. Antimicrobial peptides are expressed and produced in healthy and inflamed human synovial membranes. J Pathol. 2002;198:369–77.
Article
CAS
PubMed
Google Scholar
Paulsen F, Pufe T, Petersen W, Tillmann B. Expression of natural peptide antibiotics in human articular cartilage and synovial membrane. Clin Diagn Lab Immunol. 2001;8:1021–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elezagic D, Mörgelin M, Hermes G, Hamprecht A, Sengle G, Lau D, et al. Antimicrobial peptides derived from the cartilage.-specific C-type lectin domain family 3 member A (CLEC3A) - potential in the prevention and treatment of septic arthritis. Osteoarthritis Cartilage. 2019;27(10):1564–73. https://doi.org/10.1016/j.joca.2019.06.007.
Article
CAS
PubMed
Google Scholar
Reis PVM, Boff D, Verly RM, Melo-Braga MN, Cortés ME, Santos DM, et al. LyeTxI-b, a synthetic peptide derived from lycosa erythrognatha spider venom, shows potent antibiotic activity in Vitro and in Vivo. Front Microbiol. 2018;9:667. https://doi.org/10.3389/fmicb.2018.00667.
Article
PubMed
PubMed Central
Google Scholar
Yazici H, O'Neill MB, Kacar T, et al. Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants. ACS Appl Mater Interfaces. 2016;8(8):5070–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Breij A, Riool M, Kwakman PH, et al. Prevention of Staphylococcus aureus biomaterial-associated infections using a polymer-lipid coating containing the antimicrobial peptide OP-145. J Control Release. 2016;222:1–8.
Article
PubMed
CAS
Google Scholar
Bormann N, Koliszak A, Kasper S, Schoen L, Hilpert K, Volkmer R, et al. A short artificial antimicrobial peptide shows potential to prevent or treat bone infections. Sci Rep. 2017;7(1):1506. https://doi.org/10.1038/s41598-017-01698-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Almaaytah A, Mohammed GK, Abualhaijaa A, Al-Balas Q. Development of novel ultrashort antimicrobial peptide nanoparticles with potent antimicrobial and antibiofilm activities against multidrug-resistant bacteria. Drug Des Devel Ther. 2017;11:3159–70. https://doi.org/10.2147/DDDT.S147450.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang J, Dietz MJ, Li B. 2019.Antimicrobial peptide LL-37 is bactericidal against Staphylococcus aureus biofilms. PLoS One. 14(6):e0216676.
Chen J, Shi X, Zhu Y, et al. On-demand storage and release of antimicrobial peptides using Pandora's box-like nanotubes gated with a bacterial infection-responsive polymer. Theranostics. 2020;10(1):109–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee HR, You DG, Kim HK, Sohn JW, Kim MJ, Park JK, et al. Romo1-derived antimicrobial peptide is a new antimicrobial agent against multidrug-resistant bacteria in a murine model of sepsis. mBio. 2020;11(2):e03258–19. https://doi.org/10.1128/mBio.03258-19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duckworth D, Gulig P. Bacteriophage: potential treatment for bacterial infections. Biodrugs. 2002;16:57–62.
Article
CAS
PubMed
Google Scholar
Azeredo J, Sutherland IW. The use of phages for the removal of infectious biofilms. Curr Pharm Biotechnol. 2008;9:261–6.
Article
CAS
PubMed
Google Scholar
Sulakvelidze A, Alavidze Z, Morris JG Jr. Bacteriophage therapy. Antimicrob Agents Chemother. 2001;45(3):649–59. https://doi.org/10.1128/AAC.45.3.649-659.2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kutateladze M, Adamia R. Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol. 2010;28:591–5.
Article
CAS
PubMed
Google Scholar
Bedi MS, Verma V, Chhibber S. Amoxicillin and specific bacteriophage can be used together for eradication of biofilm of Klebsiella pneumoniae B5055. World J Microbiol Biotechnol. 2009;25:1145–51.
Article
CAS
Google Scholar
Chhibber S, Kaur T, Kaur S. Co-therapy using lytic bacteriophage and linezolid: effective treatment in eliminating methicillin resistant Staphylococcus aureus (MRSA) from diabetic foot infections. PLoS One. 2013;8(2):e56022. https://doi.org/10.1371/journal.pone.0056022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaur S, Harjai K, Chhibber S. In vivo assessment of phage and linezolid based implant coatings for treatment of methicillin resistant S. aureus (MRSA) mediated orthopaedic device related infections. PLoS One. 2016;11(6):e0157626.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bragg R, van der Westhuizen W, Lee JY, Coetsee E, Boucher C. Bacteriophages as potential treatment option for antibiotic resistant bacteria. Adv Exp Med Biol. 2014;807:97–110. https://doi.org/10.1007/978-81-322-1777-0_7.
Article
CAS
PubMed
Google Scholar
Luong T, Salabarria AC, Roach DR. Phage Therapy in the Resistance Era: Where Do We Stand and Where Are We Going? Clin Ther. 2020;42(9):1659–80. https://doi.org/10.1016/j.clinthera.2020.07.014.
Article
CAS
PubMed
Google Scholar
Taati MM, Khoshbayan A, Chegini Z, Farahani I, Shariati A. Bacteriophages, a new therapeutic solution for inhibiting multidrug-resistant bacteria causing wound infection: lesson from animal models and clinical trials. Drug Des Devel Ther. 2020;14:1867–83.
Article
Google Scholar
Fong SA, Drilling A, Morales S, et al. Activity of Bacteriophages in Removing Biofilms of Pseudomonas aeruginosa Isolates from Chronic Rhinosinusitis Patients. Front Cell Infect Microbiol. 2017;7:418. https://doi.org/10.3389/fcimb.2017.00418.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferriol-González C, Domingo-Calap P. Phages for Biofilm Removal. Antibiotics. 2020;9:268.
Article
PubMed Central
CAS
Google Scholar
Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B. Bacteriophages and phage-derived proteins--application approaches. Curr Med Chem. 2015;22(14):1757–73. https://doi.org/10.2174/0929867322666150209152851.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abedon ST. Ecology of anti-biofilm agents II: bacteriophage exploitation and biocontrol of biofilm bacteria. Pharmaceuticals. 2015;8:559–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maciejewska B, Olszak T, Drulis-Kawa Z. Applications of bacteriophages versus phage enzymes to combat and cure bacterial infections: an ambitious and also a realistic application? Appl Microbiol Biotechnol. 2018;102(6):2563–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loss G, Simões PM, Valour F, et al. Staphylococcus aureus Small Colony Variants (SCVs): News from a Chronic Prosthetic Joint Infection. Front Cell Infect Microbiol. 2019;9:363. https://doi.org/10.3389/fcimb.2019.00363.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jevon M, Guo C, Ma B, Mordan N, Nair SP, Harris M, et al. Mechanisms of internalization of Staphylococcus aureus by cultured human osteoblasts. Infect Immun. 1999;67:2677–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ellington JK, Reilly SS, Ramp WK, Smeltzer MS, Kellam JF, Hudson MC. Mechanisms of Staphylococcus aureus invasion of cultured osteoblasts. Microb Pathog. 1999;26:317–23.
Article
CAS
PubMed
Google Scholar
Garzoni C, Kelley WL. Staphylococcus aureus : new evidence for intracellular persistence. Trends Microbiol. 2009;17:59–65.
Article
CAS
PubMed
Google Scholar
Shi S, Zhang X. Interaction of Staphylococcus aureus with osteoblasts (Review). Exp Ther Med. 2012;3(3):367–70. https://doi.org/10.3892/etm.2011.423.
Article
CAS
PubMed
Google Scholar
Perez K, Patel R. Survival of Staphylococcus epidermidis in Fibroblasts and Osteoblasts. Infect Immun. 2018;86(10):e00237–18. https://doi.org/10.1128/IAI.00237-18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Sun L, Wei R, et al. Intracellular Staphylococcus aureus Control by Virulent Bacteriophages within MAC-T Bovine Mammary Epithelial Cells. Antimicrob Agents Chemother. 2017;61(2):e01990–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Przerwa A, Zimecki M, Switała-Jeleń K, et al. Effects of bacteriophages on free radical production and phagocytic functions. Med Microbiol Immunol. 2006;195(3):143–50. https://doi.org/10.1007/s00430-006-0011-4.
Article
CAS
PubMed
Google Scholar
Borysowski J, Wierzbicki P, Kłosowska D, Korczak-Kowalska G, Weber-Dąbrowska B, Gorski A. The effects of T4 and A3/R phage preparations on whole-blood monocyte and neutrophil respiratory bursts. Viral Immunol. 2010:541–4. https://doi.org/10.1089/vim.2010.0001.
Górski A, Międzybrodzki R, Borysowski J, Dąbrowska K, Wierzbicki P, et al. Phage as a modulator of immune responses. Practical implications for phage therapy. Adv Virus Res. 2012;83:41–71. https://doi.org/10.1016/B978-0-12-394438-2.00002-5.
Article
CAS
PubMed
Google Scholar
Górski A, Dąbrowska K, Międzybrodzki R, et al. Phages and immunomodulation. Future Microbiol. 2017;12:905–14. https://doi.org/10.2217/fmb-2017-0049.
Article
CAS
PubMed
Google Scholar
Pabary R, Singh C, Morales S, et al. Anti-pseudomonal bacteriophage reduces infective burden and inflammatory response in murine lung. Antimicrob Agents Chemother. 2015;60(2):744–51. https://doi.org/10.1128/AAC.01426-15.
Article
CAS
PubMed
Google Scholar
Van Belleghem JD, Clement F, Merabishvili M, Lavigne R, Vaneechoutte M. Pro-and anti-inflammatory responses of peripheral blood mononuclear cells induced by Staphylococcus aureus and Pseudomonas aeruginosa phages. Sci Rep. 2017;7(1):1–13.
CAS
Google Scholar
Gorski A, Kniotek M, Perkowska-Ptasińska A, et al. Bacteriophages and transplantation tolerance. Transplant Proc. 2006;38(1):331–3. https://doi.org/10.1016/j.transproceed.2005.12.073.
Article
CAS
PubMed
Google Scholar
Hashiguchi S, Yamaguchi Y, Takeuchi O, Akira S, Sugimura K. Immunological basis of M13 phage vaccine: Regulation under MyD88 and TLR9 signalling. Biochem Biophys Res Commun. 2010;402(1):19–22. https://doi.org/10.1016/j.bbrc.2010.09.094.
Article
CAS
PubMed
Google Scholar
Zhang L, Hou X, Sun L, et al. Staphylococcus aureus bacteriophage suppresses LPS-Induced Inflammation in MAC-T bovine mammary epithelial cells [published correction appears in Front Microbiol. 2018 9;9:2511]. Front Microbiol. 2018;9:1614. https://doi.org/10.3389/fmicb.2018.01614.
Article
PubMed
PubMed Central
Google Scholar
Morris JL, Letson HL, Elliott L, Grant AL, Wilkinson M, Hazratwala K, et al. Evaluation of bacteriophage as an adjunct therapy for treatment of peri-prosthetic joint infection caused by Staphylococcus aureus. PLoS One. 2019;14(12):e0226574. https://doi.org/10.1371/journal.pone.0226574.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kishor C, Mishra RR, Saraf SK, Kumar M, Srivastav AK, Nath G. Phage therapy of staphylococcal chronic osteomyelitis in experimental animal model. Indian J Med Res. 2016;143(1):87–94.
Article
PubMed
PubMed Central
Google Scholar
Doub JB, Ng VY, Johnson AJ, Slomka M, Fackler J, Horne B, et al. Salvage Bacteriophage Therapy for a Chronic MRSA Prosthetic Joint Infection. Antibiotics (Basel). 2020;9(5):241. https://doi.org/10.3390/antibiotics9050241.
Article
PubMed Central
Google Scholar
Nir-Paz R, Gelman D, Khouri A, Sisson BM, Fackler J, Alkalay-Oren S, et al. Successful Treatment of Antibiotic-resistant, Poly-microbial Bone Infection with Bacteriophages and Antibiotics Combination. Clin Infect Dis. 2019;69(11):2015–8. https://doi.org/10.1093/cid/ciz222.
Article
PubMed
Google Scholar
Kodumuri P, Geutjens G, Kerr HL. Time delay between diagnosis and arthroscopic lavage in septic arthritis. Does it matter? Int Orthop. 2012;36(8):1727–31. https://doi.org/10.1007/s00264-012-1546-1.
Article
PubMed
PubMed Central
Google Scholar
Davis CM, Zamora RA. Surgical Options and Approaches for Septic Arthritis of the Native Hip and Knee Joint. J Arthroplasty. 2020;35(3S):S14–8. https://doi.org/10.1016/j.arth.2019.10.062.
Article
PubMed
Google Scholar
Watanabe R, Matsumoto T, Sano G, et al. Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrob Agents Chemother. 2007;51(2):446–52. https://doi.org/10.1128/AAC.00635-06.
Article
CAS
PubMed
Google Scholar
Kim KP, Cha JD, Jang EH, et al. PEGylation of bacteriophages increases blood circulation time and reduces T-helper type 1 immune response. Microb Biotechnol. 2008;1(3):247–57. https://doi.org/10.1111/j.1751-7915.2008.00028.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chanishvili N. Phage therapy--history from Twort and d'Herelle through Soviet experience to current approaches. Adv Virus Res. 2012;83:3–40. https://doi.org/10.1016/B978-0-12-394438-2.00001-3.
Article
CAS
PubMed
Google Scholar
Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J, Lessor L, et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii Infection. Antimicrob Agents Chemother. 2017;61(10):e00954–17. https://doi.org/10.1128/AAC.00954-17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferry T, Batailler C, Petitjean C, Chateau J, Fevre C, Forestier E, et al. The potential innovative use of bacteriophages within the DAC® hydrogel to treat patients with knee megaprosthesis infection requiring "debridement antibiotics and implant retention" and soft tissue coverage as salvage therapy. Front Med (Lausanne). 2020;7:342. https://doi.org/10.3389/fmed.2020.00342.
Article
Google Scholar
Markoishvili K, Tsitlanadze G, Katsarava R, Morris JG Jr, Sulakvelidze A. A novel sustained-release matrix based on biodegradable poly (ester amide) s and impregnated with bacteriophages and an antibiotic shows promise in management of infected venous stasis ulcers and other poorly healing wounds. Int J Dermatol. 2002;41(7):453–8. https://doi.org/10.1046/j.1365-4362.2002.01451.x PMID: 12121566.
Article
CAS
PubMed
Google Scholar
Jikia D, Chkhaidze N, Imedashvili E, Mgaloblishvili I, Tsitlanadze G, Katsarava R, et al. The use of a novel biodegradable preparation capable of the sustained release of bacteriophages and ciprofloxacin, in the complex treatment of multidrug-resistant Staphylococcus aureus-infected local radiation injuries caused by exposure to Sr90. Clin Exp Dermatol. 2005;30:23–6. https://doi.org/10.1111/j.1365-2230.2004.01600.
Article
CAS
PubMed
Google Scholar
Duplessis C, Biswas B, Hanisch B, Perkins M, Henry M, Quinones J, et al. Refractory Pseudomonas Bacteremia in a 2-Year-Old Sterilized by Bacteriophage Therapy. J Pediatric Infect Dis Soc. 2018;7(3):253–6. https://doi.org/10.1093/jpids/pix056.
Article
CAS
PubMed
Google Scholar
Jennes S, Merabishvili M, Soentjens P, Pang KW, Rose T, Keersebilck E, et al. Use of bacteriophages in the treatment of colistin-only-sensitive Pseudomonas aeruginosa septicaemia in a patient with acute kidney injury-a case report. Crit Care. 2017;21(1):129. https://doi.org/10.1186/s13054-017-1709-y.
Article
PubMed
PubMed Central
Google Scholar
Fotopoulos VC, Tzinia A, Tzurbakis M, Kalfakakou V, Levidiotou-Stefanou S, Georgoulis A. Expression levels of matrix metalloproteinase (MMP)-9 and its specific inhibitor TIMP-1, in septic and aseptic arthritis of the knee. Knee Surg Sports Traumatol Arthrosc. 2012;20(6):1159–67. https://doi.org/10.1007/s00167-011-1676-9.
Article
PubMed
Google Scholar
Sultana S, Adhikary R, Nandi A, Bishayi B. Neutralization of MMP-2 protects Staphylococcus aureus infection induced septic arthritis in mice and regulates the levels of cytokines. Microb Pathog. 2016;99:148–61. https://doi.org/10.1016/j.micpath.2016.08.021.
Article
CAS
PubMed
Google Scholar
Yoshihara Y, Nakamura H, Obata K, Yamada H, Hayakawa T, Fujikawa K, et al. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis. Ann Rheum Dis. 2000;59:455.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burrage PS, Mix KS, Brinckerhoff CE. Matrix metalloproteinases: role in arthritis. Front Biosci. 2006;11:529–43. https://doi.org/10.2741/1817 PMID: 16146751.
Article
CAS
PubMed
Google Scholar
Calander AM, Starckx S, Opdenakker G, Bergin P, Quiding-Järbrink M, Tarkowski A. Matrix metalloproteinase-9 (gelatinase B) deficiency leads to increased severity of Staphylococcus aureus-triggered septic arthritis. Microbes Infect. 2006;8(6):1434–9. https://doi.org/10.1016/j.micinf.2006.01.001.
Article
CAS
PubMed
Google Scholar
Puliti M, Momi S, Falcinelli E, Gresele P, Bistoni F, Tissi L. Contribution of matrix metalloproteinase 2 to joint destruction in group B Streptococcus-induced murine arthritis. Arthritis Rheum. 2012;64(4):1089–97. https://doi.org/10.1002/art.33450.
Article
CAS
PubMed
Google Scholar
Han YP, Tuan TL, Wu H, Hughes M, Garner WL. TNF-alpha stimulates activation of pro-MMP2 in human skin through NF-(kappa) B mediated induction of MT1-MMP. J Cell Sci. 2001;114(Pt 1):131–9.
Article
CAS
PubMed
Google Scholar
Kanangat S, Postlethwaite A, Hasty K, et al. Induction of multiple matrix metalloproteinases in human dermal and synovial fibroblasts by Staphylococcus aureus: implications in the pathogenesis of septic arthritis and other soft tissue infections. Arthritis Res Ther. 2006;8(6):R176. https://doi.org/10.1186/ar2086.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sultana S, Dey R, Bishayi B. Dual neutralization of TNFR-2 and MMP-2 regulates the severity of S. aureus induced septic arthritis correlating alteration in the level of interferon gamma and interleukin-10 in terms of TNFR2 blocking. Immunol Res. 2018;66(1):97–119. https://doi.org/10.1007/s12026-017-8979-y.
Article
CAS
PubMed
Google Scholar
Gjertsson I, Innocenti M, Matrisian LM, Tarkowski A. Metalloproteinase-7 contributes to joint destruction in Staphylococcus aureus induced arthritis. Microb Pathog. 2005;38(2-3):97–105. https://doi.org/10.1016/j.micpath.2004.12.005.
Article
CAS
PubMed
Google Scholar
Schönbeck U, Mach F, Libby P. Generation of biologically active IL-1β by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1β processing. J Immunol. 1998;161:3340.
Article
PubMed
Google Scholar
Staurengo-Ferrari L, Trevelin SC, Fattori V, et al. Interleukin-33 Receptor (ST2) Deficiency Improves the Outcome of Staphylococcus aureus-Induced Septic Arthritis. Front Immunol. 2018;9:962. https://doi.org/10.3389/fimmu.2018.00962.
Article
CAS
PubMed
PubMed Central
Google Scholar
Henningsson L, Jirholt P, Bogestål YR, Eneljung T, Adiels M, Lindholm C, et al. Interleukin 15 mediates joint destruction in Staphylococcus aureus arthritis. J Infect Dis. 2012;206(5):687–96. https://doi.org/10.1093/infdis/jis295.
Article
CAS
PubMed
Google Scholar
Gjertsson I, Hultgren OH, Tarkowski A. Interleukin-10 ameliorates the outcome of Staphylococcus aureus arthritis by promoting bacterial clearance. Clin Exp Immunol. 2002;130(3):409–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Puliti M, von Hunolstein C, Bistoni F, et al. The beneficial effect of interleukin-12 on arthritis induced by group B streptococci is mediated by interferon-γ and interleukin-10 production. Arthritis Rheum. 2002;46(3):806–17.
Article
CAS
PubMed
Google Scholar
Hultgren O, Kopf M, Tarkowski A. Staphylococcus aureus-induced septic arthritis and septic death is decreased in IL-4-deficient mice: role of IL-4 as promoter for bacterial growth. J Immunol. 1998;160(10):5082–7. 9590259.
Article
CAS
PubMed
Google Scholar
Gilbertie JM, Schaer TP, Schubert AG, Jacob ME, Menegatti S, Ashton Lavoie R, et al. Platelet-rich plasma lysate displays anti-biofilm properties and restores antimicrobial activity against synovial fluid biofilms in vitro. J Orthop Res. 2020;38(6):1365–74. https://doi.org/10.1002/jor.24584.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cho YJ, Patel D, Chun YS, Shin WJ, Rhyu KH. Novel Antibiotic-Loaded Cement Femoral Head Spacer for the Treatment of Advanced Pyogenic Arthritis in Adult Hip. J Arthroplasty. 2018;33(6):1899–903. https://doi.org/10.1016/j.arth.2017.12.028.
Article
PubMed
Google Scholar
Hsu YH, Chen DW, Li MJ, Yu YH, Chou YC, Liu SJ. Sustained Delivery of Analgesic and Antimicrobial Agents to Knee Joint by Direct Injections of Electrosprayed Multipharmaceutical-Loaded Nano/Microparticles. Polymers (Basel). 2018;10(8):890. https://doi.org/10.3390/polym10080890.
Article
CAS
PubMed Central
Google Scholar
Schultz BJ, Sweeney T, DeBaun MR, Remmel M, Midic U, Khatri P, et al. Pilot study of a novel serum mRNA gene panel for diagnosis of acute septic arthritis. World J Orthop. 2019;10(12):424–33. https://doi.org/10.5312/wjo.v10.i12.424.
Article
PubMed
PubMed Central
Google Scholar
Zhao J, Zhang S, Zhang L, Dong X, Li J, Wang Y, et al. Serum procalcitonin levels as a diagnostic marker for septic arthritis: A meta-analysis. Am J Emerg Med. 2017;35(8):1166–71. https://doi.org/10.1016/j.ajem.2017.06.014.
Article
PubMed
Google Scholar
Maharajan K, Patro DK, Menon J, Hariharan AP, Parija SC, Poduval M, et al. Serum Pro-calcitonin is a sensitive and specific marker in the diagnosis of septic arthritis and acute osteomyelitis. J Orthop Surg Res. 2013;8:19. https://doi.org/10.1186/1749-799X-8-19.
Article
PubMed
PubMed Central
Google Scholar
Sultana S, Bishayi B. Etoposide-mediated depletion of peripheral blood monocytes post S. aureus infection attenuates septic arthritis by modulating macrophage-derived factors responsible for inflammatory destruction. Immunol Lett. 2020;220:51–62. https://doi.org/10.1016/j.imlet.2020.02.001.
Article
CAS
PubMed
Google Scholar