3D technology is helping to address some of the growing complexities in healthcare, while enabling a more sustainable future as a scalable and cost-effective technology. Understood as a patient-specific process, it allows for greater efficiency throughout the entire value chain to improve results for the patient, and doing it right the first time (GIRFT methodology) through a higher level of customization and predictability [4, 22,23,24].
Hospital General Universitario Gregorio Marañón is a pioneer in the transversal implementation of hospital 3D printing, incorporating an “in-house” medical 3D printing laboratory integrated into the clinical workflow of more than 20 medical-surgical specialties. As a university manufacturing hospital, it is licensed to manufacture medical devices in compliance with the international standard ISO 13485 for quality management systems for medical products. This has allowed the Orthopaedic Surgery and Traumatology Department to network and coordinate production with traditional orthopedic implant manufacturers and research centers [25,26,27,28,29,30].
A university hospital includes students or doctors in training, not replacing universities but complementing training, enriching the academic environment. In the same way, a manufacturing university hospital does not replace factories. In a manufacturing university hospital, 3D printing goes hand-in-hand with translational research and teaching, acting as an accelerator for clinical innovation. 3D technology is a great tool for teaching and medical simulation, which is also carried out efficiently and in a personalized way, since training models can be manufactured that reproduce specific pathologies of real medical cases.
The integration of 3D printing into the clinical workflow has allowed complete control and monitoring of the process, from the indication to the manufacture of a customized medical-surgical solution. This adds significant value in the manufacture of guides and instruments or even customized implants, integrating 3D design as part of the therapeutic planning process, and 3D printing as part of the surgical approach [31,32,33].
The indicators described in this study allow evaluation and proposal of specific corrective actions according to the results obtained. Annual production by areas of expertise has changed during the study period. Identification and optimization of specific software and hardware, materials or manufacturing parameters have been research objectives, which has required not only implementation of a high number of processes in first two years, but also an increase in working time of technical and medical staff assigned to the achievement of these processes.
It is important to identify the areas of expertise that have the greatest potential for the integration of 3D printing technology. The Radiological Society of North America 3D printing group (3D Special Interest Group RSNA) has reviewed and classified the clinical cases in which it is more efficient to use 3D printed biomodels, and has concluded that in simple fractures the role of 3D printing is not as useful as in complex fractures, hip dysplasia or bone tumours with joint involvement [34]. In our study, Reconstructive Surgery, which included deformities, degenerative joint pathology, infections or arthroplasties, Traumatology, which managed fractures of any anatomical location or age of presentation, and Orthopedic Oncology, represented 53.77% of the global activity. If we take into account that 38.84% was research activity, the remaining areas of expertise accounted for 7.39% (46 cases) of the total activity. With these findings, it is important to highlight the role of the manufacturing university hospital allowing the adaptation and optimization of response times, of great relevance in areas such as Traumatology or Orthopedic Oncology, where traditional manufacturing presents restrictions such as process outsourcing or associated costs.
The utility of 3D printed biomodels for preoperative planning has been of great interest in recent years [35]. In our study, 87.32% of the required products were 3D printed biomodels used not only for surgical planning but also for communication or research.
The availability of machines for “in-house” manufacturing by means of FDM or SLA technologies has allowed the production of 3D Printed Biomodels, Surgical Guides and Patient-specific Instruments, and the collaborative work with manufacturing companies has facilitated the co-design and production of patient-specific implants. In this way, complete traceability can be maintained over each stage of creation without interrupting the workflow. It allows attending in times of very tight therapeutic windows and with the solvency of a multidisciplinary team that accumulates valuable experience and knowledge of the patient that would otherwise remain fragmented. This is enabled by the point-of-care manufacturing model. It is also in line with the regulatory framework of this technology applied to personalized medicine, which identifies the prescribing physician as the final responsable for the process, including the design of the custom-made product [36,37,38,39].