Font-Rodriguez DE, Scuderi GR, Insall JN. Survivorship of cemented total knee arthroplasty. Clin Orthop Relat Res. 1997;345:79–86.
Article
Google Scholar
Callaghan JJ, O’Rourke MR, Iossi MF, Liu SS, Goetz DD, Vittetoe DA, et al. Cemented rotating-platform total knee replacement. A concise follow up, at a minimum of fifteen years, of a previous report. J Bone Joint Surg Am. 2005;87(9):1995–8.
PubMed
Google Scholar
Keating EM, Meding JB, Faris PM, Ritter MA. Long-term followup of nonmodular total knee replacements. Clin Orthop Relat Res. 2002;404:34–9.
Article
Google Scholar
Gill GS, Joshi AB. Long-term results of cemented, posterior cruciate ligament-retaining total knee arthroplasty in osteoarthritis. Am J Knee Surg. 2001;14(4):209–14.
CAS
PubMed
Google Scholar
Pavone V, Boettner F, Fickert S, Sculco TP. Total condylar knee arthroplasty: a long-term follow-up. Clin Orthop Relat Res. 2001;388:18–25.
Article
Google Scholar
Ritter MA, Faris PM, Keating EM, Meding JB. Postoperative alignment of total knee replacement. Its effect on survival. Clin Orthop Relat Res. 1994;299:153–6.
Google Scholar
Rodriguez JA, Bhende H, Ranawat CS. Total condylar knee replacement: a 20-year followup study. Clin Orthop Relat Res. 2001;388:10–7.
Article
Google Scholar
Shan L, Shan B, Suzuki A, Nouh F, Saxena A. Intermediate and long-term quality of life after total knee replacement: a systematic review and meta-analysis. J Bone Joint Surg Am. 2015;97(2):156–68.
Article
PubMed
Google Scholar
Lotke PA, Lonner JH, editors. Master techniques in orthopaedic surgery: knee arthroplasty. Anterior medial exposure. 3rd ed. Lippincott: Williams & Wilkins; 2009. p. 1–18.
Google Scholar
Pan WM, Li XG, Tang TS, Qian ZL, Zhang Q, Zhang CM. Mini-subvastus versus a standard approach in total knee arthroplasty: a prospective, randomized controlled study. J Int Med Res. 2010;38(3):890–900.
Article
PubMed
Google Scholar
Lai Z, Shi S, Fei J, Wei W. Total knee arthroplasty performed with either a mini-subvastus or a standard approach: a prospective randomized controlled study with a minimum follow-up of 2 years. Arch Orthop Trauma Surg. 2014;134(8):1155–62.
Article
PubMed
Google Scholar
Deirmengian CA, Lonner JH. What’s new in adult reconstructive knee surgery. J Bone Joint Surg Am. 2010;92(16):2753–64.
Article
PubMed
Google Scholar
Goble EM, Justin DF. Minimally invasive total knee replacement: principles and technique. Orthop Clin North Am. 2004;35(2):235–45.
Article
PubMed
Google Scholar
Scuderi GR. Minimally invasive total knee arthroplasty: surgical technique. Am J Orthop (Belle Mead NJ). 2006;35(7 Suppl):7–11.
Google Scholar
Lonner JH. Minimally invasive approaches to total knee arthroplasty: results. Am J Orthop (Belle Mead NJ). 2006;35(7 Suppl):27–9.
Google Scholar
Hofmann AA, Plaster RL, Murdock LE. Subvastus (Southern) approach for primary total knee arthroplasty. Clin Orthop Relat Res. 1991;269:70–7.
Google Scholar
Engh GA, Holt BT, Parks NL. A midvastus muscle-splitting approach for total knee arthroplasty. J Arthroplasty. 1997;12(3):322–31.
Article
CAS
PubMed
Google Scholar
Tria Jr AJ, Coon TM. Minimal incision total knee arthroplasty: early experience. Clin Orthop Relat Res. 2003;416:185–90.
Article
Google Scholar
Alan RK, Tria Jr AJ. Quadricpes-sparing total knee arthroplasty using the posterior stabilized TKA design. J Knee Surg. 2006;19(1):71–6.
Article
PubMed
Google Scholar
Tenholder M, Clarke HD, Scuderi GR. Minimal-incision total knee arthroplasty: the early clinical experience. Clin Orthop Relat Res. 2005;440:67–76.
Article
PubMed
Google Scholar
Satterly T, Neeley R, Johnson-Wo AK, Bhowmik-Stoker M, Shrader MW, Jacofsky MC, et al. Role of total knee arthroplasty approaches in gait recovery through 6 months. J Knee Surg. 2013;26(4):257–62.
Article
PubMed
Google Scholar
Lin SY, Chen CH, Fu YC, Huang PJ, Lu CC, Su JY, et al. Comparison of the clinical and radiological outcomes of three minimally invasive techniques for total knee replacement at two years. Bone Joint J. 2013;95-B(7):906–10.
Article
PubMed
Google Scholar
Pongcharoen B, Yakampor T, Charoencholvanish K. Patellar tracking and anterior knee pain are similar after medial parapatellar and midvastus approaches in minimally invasive TKA. Clin Orthop Relat Res. 2013;471(5):1654–60.
Article
PubMed
PubMed Central
Google Scholar
Laskin RS, Beksac B, Phongjunakorn A, Pittors K, Davis J, Shim JC, et al. Petersen Minimally invasive total knee replacement through a mini-midvastus incision: an outcome study. Clin Orthop Relat Res. 2004;428:74–81.
Article
Google Scholar
Tashiro Y, Miura H, Matsuda S, Okazaki K, Iwamoto Y. Minimally invasive versus standard approach in total knee arthroplasty. Clin Orthop Relat Res. 2007;463:144–50.
PubMed
Google Scholar
Schroer WC, Dieffeld PJ, Reedy ME, LeMarr AR. Mini-subvastus approach for total knee arthroplasty. J Arthroplasty. 2008;23(1):19–25.
Article
PubMed
Google Scholar
Bonutti PM, Mont MA, McMahon M, Ragland PS, Kester M. Minimally invasive total knee arthroplasty. J Bone Joint Surg Am. 2004;86-A Suppl 2:26–32.
Article
Google Scholar
Cheng T, Liu T, Zhang G. Does minimally invasive surgery improve short-term recovery in total knee arthroplasty? Clin Orthop Relat Res. 2010;468:1635–48.
Article
PubMed
PubMed Central
Google Scholar
Schroer WC, Diesfeld PJ, Reedy ME, LeMarr AR. Isokinetic strength testing of MinimallyInvasive total knee arthroplasty recovery. J Arthroplasty. 2010;25(2):274–9.
Article
PubMed
Google Scholar
Tasker A, Hassaballa M, Murray J, Lancaster S, Artz N, Harries W, et al. Minimally invasive total knee arthroplasty; a pragmatic randomised controlled trial reporting outcomes up to 2 year follow up. Knee. 2014;21(1):189–93.
Article
PubMed
Google Scholar
Kim JG, Lee SW, Ha JK, Choi HJ, Yang SJ, Lee MY. The effectiveness of minimally invasive total knee arthroplasty to preserve quadriceps strength: a randomized controlled trial. Knee. 2011;18:443–7.
Article
PubMed
Google Scholar
Hernandez-Vaquero D, Noriega-Fernandez A, Suarez-Vazquez A. Total knee arthroplasties performed with a mini-incision or a standard incision. Similar results at six months follow-up. BMC Musculoskelet Disord. 2010;6:11–27.
Google Scholar
Schroer WC, Diesfeld PJ, Reedy ME, LeMarr AR. Surgical accuracy with the mini-subvastus total knee arthroplasty - a computer tomography scan analysis of postoperative implant alignment. J Arthroplasty. 2008;23(4):543–9.
Article
PubMed
Google Scholar
Kolisek FR, Bonutti PM, Hozack WJ, Purtill J, Sharkey PF, Zelicof SB, et al. Clinical experience using a minimally invasive surgical approach for total knee arthroplasty: early results of a prospective randomized study compared to a standard approach. J Arthroplasty. 2007;22(1):8–13.
Article
PubMed
Google Scholar
Dalury DF, Dennis DA. Mini-incision total knee arthroplasty can increase risk of componentmalalignment. Clin Orthop Relat Res. 2005;440:77–81.
Article
PubMed
Google Scholar
Gandhi R, Smith H, Lefaivre KA, Davey RD, Mahomed NN. Complications after minimally invasive total knee arthroplasty as compared with traditional incision techniques - a meta-analysis. J Arthroplasty. 2011;26(1):29–35.
Article
PubMed
Google Scholar
Xu SZ, Lin XJ, Tong X, Wang XW. Minimally invasive midvastus versus standard parapatellar approach in total knee arthroplasty: a meta-analysis of randomized controlled trials. PLoS One. 2014;9(5), e95311.
Article
PubMed
PubMed Central
Google Scholar
Heekin RD, Fokin AA. Mini-midvastus versus mini-medial parapatellar approach for minimally invasive total knee arthroplasty: outcomes pendulum is at equilibrium. J Arthroplasty. 2014;29(2):339–42.
Article
PubMed
Google Scholar
Dayton MR, Bade MJ, Muratore T, Shulman BC, Kohrt WM, Stevens-Lapsley JE. Minimally invasive total knee arthroplasty: surgical implications for recovery. J Knee Surg. 2013;26(3):195–201.
Article
PubMed
Google Scholar
Guy SP, Farndon MA, Conroy JL, Bennett C, Grainger AJ, London NJ. A prospective randomized study of minimally invasive midvastus total knee arthroplasty compared with standard total knee arthroplasty. Knee. 2012;19(6):866–71.
Article
PubMed
Google Scholar
Li C, Zeng Y, Shen B, Kang P, Yang J, Zhou Z, et al. A meta-analysis of minimally invasive and convetional medial parapatellar approaches fpr primary total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2015;23(7):1971–85.
Article
PubMed
Google Scholar
Alcelik I, Sukeik M, Pollock R, Misra A, Naguib A, Haddad FS. Comparing the mid-vastus and medial parapatellar approaches in total knee arthroplasty: a meta-analysis of short-term outcomes. Knee. 2012;19(4):229–36.
Article
PubMed
Google Scholar
Khanna A, Gougoulias N, Longo UG, Maffulli N. Minimally invasive total knee arthroplasty: a systematic review. Orthop Clin North Am. 2009;40(4):479–89.
Article
PubMed
Google Scholar
Liu Z, Yang H. Comparison of the minimally invasive and standard approaches for total knee arthroplasty: systematic review and meta-analysis. J Int Med Res. 2011;39(5):1607–17.
Article
CAS
PubMed
Google Scholar
Smith TO, King JJ, Hing CB. A meta-analysis of randomized controlled trials comparing the clinical and radiological outcomes following minimally invasive to conventional exposure for total knee arthroplasty. Knee. 2012;19(1):1–7.
Article
PubMed
Google Scholar
de Steiger RN, Liu YL, Graves SE. Computer navigation for total knee arthroplasty reduces revision rate for patients less than sixty-five years of age. J Bone Joint Surg Am. 2015;97:635–42.
Article
PubMed
Google Scholar
Bauwens K, Matthes G, Wich M, Gebhard F, Hanson B, Ekkernkamp A, et al. Navigated total knee replacement. A meta-analysis. J Bone Joint Surg Am. 2007;89(2):261–9.
PubMed
Google Scholar
Mason JB, Fehring TK, Estok R, Banel D, Fahrbach K. Meta-analysis of alignment outcomes in computer-assisted total kne arthroplasty surgery. J Arthroplasty. 2007;22(8):1097–106.
Article
PubMed
Google Scholar
Hernandez-Vaquero D, Noriega-Fernandez A, Fernandez-Carreira JM, Fernandez-Simon JM, Llorens de Los Rios J. Computer-assisted surgery improves rotational positioning of the femoral component but not the tibial component in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2014;22(12):3127–34.
Article
PubMed
Google Scholar
Dutton AQ, Yeo SJ. Computer-assisted minimally invasive total knee arthroplasty compared with standard total knee arthroplasty. Surgical technique. J Bone Joint Surg Am. 2009;91 Suppl 2 Pt 1:116–30.
Article
PubMed
Google Scholar
Khakha RS, Chowdhry M, Norris M, Kheiran A, Patel N, Chauhan SK. Five-year follow-up of minimally invasive computer assisted total knee arthroplasty (MICATKA) versus conventional computer assisted total knee arthroplasty (CATKA) - a population matched study. Knee. 2014;21(5):944–8.
Article
CAS
PubMed
Google Scholar
Guyatt GH, Townsend M, Berman LB, Keller JL. A comparison of Likert and visual analogue scales for measuring change in function. J Chronic Dis. 1987;40(12):1129–33.
Article
CAS
PubMed
Google Scholar
Norkin CC, White DJ. Measurement of joint motion; a guide to goniometry. F.A. Davis Company; 4th ed. 2009.
Brosseau L, Tousignant M, Budd J, Chartier N, Duciaume L, Plamondon S, et al. Intratester and intertester reliability and criterion validity of the parallelogram and universal goniometers for active knee flexion in healthy subjects. Physiother Res Int. 1997;2(3):150–66.
Article
CAS
PubMed
Google Scholar
Lenssen AF, van Dam EM, Crijns YH, Verhey M, Geesink RJ, van den Brandt PA, et al. Reproducibility of goniometric measurement of the knee in the in-hospital phase following total knee arthroplasty. BMC Musculoskelet Disord. 2007;8:83.
Article
PubMed
PubMed Central
Google Scholar
Jones SE, Kon SS, Canavan JL, Patel MS, Clark AL, Nolan CM, et al. The five-repetition sit-to-stand test as a functional outcome measure in COPD. Thorax. 2013;68(11):1015–20.
Article
PubMed
Google Scholar
Evanich CJ, Tkach TK, von Glinski S, Camargo MP, Hofmann AA. 6- to 10-year experience using countersunk metal-backed patellas. J Arthroplasty. 1997;12(2):149–54.
Article
CAS
PubMed
Google Scholar
Insall JN, Dorr LD, Scott RD, Scott WN. Rationale of the knee society clinical rating system. Clin Orthop Relat Res. 1989;248:13–4.
Google Scholar
Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Sitt L. Validation study of WOMAC: a health status instrument for measuring clinically-important patient-relevant outcomes following total hip or knee arthroplasty in osteoarthritis. J Orthop Reuth. 1988;1:95–108.
Google Scholar
Ewald FC. The knee society total knee arthroplasty roentgenographic evaluation and scoring system. Clin Orthop Relat Res. 1989;248:9–12.
Google Scholar
Chauhan SK, Clark GW, Lloyd S, Scott RG, Breidahl W, Sikorski JM. Computer-assisted total knee replacement. A controlled cadaver study using a multi-parameter quantitative CT assessment of alignment (the Perth CT Protocol). J Bone Joint Surg Br. 2004;86(6):818–23.
Article
CAS
PubMed
Google Scholar