We have performed a cross-sectional study of a population that is representative of people in our hospital undergoing knee replacement surgery. We have assessed gait with regards to knee range of motion prior to and after knee arthroplasty surgery in a bid to understand if this improves with surgery. In so doing we have investigated the feasibility and utility of performing gait assessments in a busy clinical setting, to better understand the potential of such measurements as a clinical outcome measure.
In assessing the effects of surgery, a statistically significant increase of knee sagittal range of motion during swing was observed. In comparison with the healthy active age-matched control group, all sagittal plane variables were significantly different in the TKA patients, in addition to stride duration, which was 25% slower than controls. However, subsequent discriminant analysis identified that sagittal plane knee ROM in stance and swing were the two most important variables in discriminating between the controls and TKA patients, despite the implied difference in walking speed between the groups; previous studies have indicated that knee movement during stance is probably independent of gait speed [23]. We have previously shown that IMUs can be used to discriminate between controls and subjects with early OA from the measurement of knee ROM in stance [21], which is in agreement with other studies [24,25]. Thus TKA patients maintain the characteristics of OA gait after their surgery, even though pain has reduced. Their passive range of motion has increased slightly, so patients were using only a fraction of their potential knee movement during gait [17].
The main effect of surgery was to result in a higher knee range of motion during swing. Although motion of the swing leg is likened to that of a compound pendulum, simulations have shown that reduced knee flexion angle during swing may be caused by overactivity of the rectus femoris, weakened hip flexors or a large knee flexion velocity at toe off [26]. Subsequent analysis by the same group showed that knee flexion velocity at toe-off contributed most to peak knee angle (30°) [27]. In our study, peak knee angular velocity was 191 degrees/s pre-operatively and increased to 231 degrees/s at 52 weeks post-operatively. We suggest that this difference in angular velocity could contribute to the differences in peak knee angle seen after surgery; it is possible that pain relief provided by surgery at 12 months contributes to the faster knee angular velocity.
Peak knee flexion in stance corresponds with the time of peak knee flexion moment, and this moment has been shown to be reduced in TKA patients [11]. In their musculoskeletal modelling, the authors showed that the quadriceps contribute significantly less to the extension moment developed about the knee during early stance in patients with TKA, which they described as a “quadriceps avoidance” gait pattern [11]. Patients may develop such a gait pattern during the progression of OA in order to reduce load, and therefore pain, on the knee, but this gait pattern appears to be maintained post-operatively.
Changes in muscle activation patterns have been reported in TKA [28,29], and could explain the limited knee angle in stance post-operatively. Reduced quadriceps force and volitional activation have also been reported [30]. Prolonged muscular co-contractions of rectus femoris, hamstrings and tibialis anterior during stance have been observed, and co-activation of these muscles may stabilise the knee during stance phase [28]. Our patients showed relatively little change in knee angle during stance after the initial maximum, suggestive of co-contraction of antagonistic muscles, perhaps required for knee stabilisation.
It is, however, interesting to consider what should be expected as an outcome after knee replacement. Although knee movement improves, the mean values for the knee ranges of motion in both swing and stance phases at 12 months are still >2 SDs below the means for an active healthy control group; mean stride duration is also significantly below normal. Although mean values for gait parameters were significantly reduced in all patient groups compared to controls, it is interesting to inspect individual values; only 1/29 patients were within the normal range for knee stance flexion pre-operatively, whereas 9/28 were within the normal range 12 months post-operatively (as shown in Figure 4). These data indicate that good functional outcome is possible. It would therefore be very interesting to investigate the reasons why about one third of TKA patients can achieve good functional outcome, but two thirds have poor outcome. It would also be important to establish whether directed rehabilitation can improve outcome, and at what stage this can most effectively be implemented.
Other studies have investigated the use of gait as an outcome measure in the assessment of knee replacement [31,32]. The authors presented a visual classification system, classifying patients as “dominant normal”, “non-dominant normal”, “non-dominant OA”, and “dominant OA”, based on the position of a summary score in a simplex plot [32]. Pre-operatively 8/9 patients were classified as “dominant OA” on the basis of gait measurements, and 12 months post-operatively 7/9 patients were classified as “dominant OA”, indicating gait characteristics similar to patients with severe OA [32]. This classification system used a full opto-electronic gait system and a complex algorithm to classify patients, which could not be used as a matter of routine in a busy out-patient department. The simple analysis of knee flexion in stance described in this paper is feasible for routine clinical use, and appears to be just as effective in evaluating outcome.
Although we have used a measurement technique that can be used in an out-patient clinic, we have still evaluated patients in a simple environment that requires walking in a straight line on a level surface. In order for patients with knee OA, both before and after surgery, to maintain a mobile healthy lifestyle, they need to negotiate more complex terrain, involving gradients, steps, and uneven surfaces, and require to share that space with other users [18]. The degree to which individuals utilise the opportunity for activity will depend on their capabilities. The capabilities model stresses that the overall objective for a person is to be able to undertake the activities they wish to do, and their ability to achieve this depends on the capabilities required by the activity and its associated environments and the capabilities provided by the individual [33]. We have demonstrated that the provided capabilities of TKA patients are impaired, so in order to improve mobility of these patients the gap between provided and required capabilities needs to narrow. Objective measurements of function within a complex environment can inform developments to improve mobility, for rehabilitation professionals, implant designers, and those involved with the design of the built environment and transport infrastructure.