Skip to main content

Advertisement

Table 4 Studies focused on validation/development of systems/algorithms for monitoring shoulder motion

From: Wearable systems for shoulder kinematics assessment: a systematic review

Reference, Year, Type of publicationSensors, BrandPlacement and wearabilityTarget shoulder parameters, PerformanceGold standardTask executedParticipantsAim
Jung 2010, [77]
Conference
IMU (n = 6),
ADXL 345 (acc)
LPY51 50 AL (gyr)
HMC5843 (magn)
Bilateral:
UA and FA (distal third), thorax and pelvis
Strap
Sh orientation and positionHDRT systemArms above head
Bend arms
Bend waist
HS (n = 1)Validate the motion tracking algorithm
El-Gohary 2011, [78]
Conference
IMU (n = 2),
APDM Opal
Unilateral:
FA (near wrist), UA (distal third)
Strap
Sh ROM,
r = 0.91–0.97
Eagle Analog SystemSh FLX-EXT
Sh AB-AD
Elb FLX-EXT
Elb PR-SU
HS (n = 1)Validate data fusion algorithm
Zhang 2011, [79]
Full-Text
M-IMU (n = 3),
Xsens MTx
Unilateral:
UA (laterally, above the elbow), FA (lateral and flat side of the FA near the wrist), sternum
Strap, clothing
Sh ROM,
RMSE = 2.4°
(sh FLX-EXT)
RMSE = 0.9°
(sh AB-AD)
RMSE = 2.9°
(sh IER)
BTS SMART-DFree movementsHS (n = 4)Validate sensor fusion algorithm
El-Gohary 2012, [80]
Full-Text
IMU (n = 2),
APDM Opal
Unilateral:
UA (middle third, slightly posterior), FA (distal, near wrist)
Strap band
Sh ROM,
RMSE = 5.5°
(sh FLX-EXT)
RMSE = 4.4°
(sh AB-AD)
VICONSh FLX-EXT
Sh AB-AD
Elb FLX-EXT
FA PR-SU
Touching nose
Reaching for a doorknob
HS (n = 8)Validate data fusion algorithm
Lee e Low 2012, [81]
Full-Text
Acc (n = 2), Freescale MMA7361 LUnilateral:
UA (near elbow), FA (near wrist)
-
Sh ROM,
RMSE = 2.12°
(sh FLX-EXT)
RMSE = 3.68°
(sh rotation)
IMU
(Xsens MTx)
UA FLX-EXT and medial/lateral rotation
FA FLX-EXT
and PR-SU
(sagittal plane)
HS (n = 1)Validate the feasibility of the proposed algorithm
Hsu 2013, [82]
Conference
M-IMU (n = 2),
LSM303DLH
(acc, magn)
L3G4200D (gyr)
Unilateral:
UA, FA
Velcro strap
Sh ROM,
RMSE = 1.34°-5.08°
Xsens MTw, (n = 2)Sh FLX, AB, EXT, ER and IRHS (n = 10)
8 M, 2 F
23.3 ± 1.33 Y
Validate data fusion algorithm
Lambrecht e Kirsch 2014, [16]
Full-Text
M-IMU (n = 4),
InvenSense MPU-9150 chip
Unilateral:
Sternum, UA, FA and hand
-
Sh ROM,
RMSE = 4.9°
(sh azimuth)
RMSE = 1.2°
(sh elevation)
RMSE = 2.9°
(sh IR)
OptotrackReaching movementsHS (n = 1)Validate sensors’ accuracy and data fusion algorithm
Ricci 2014, [83]
Full-Text
M-IMU (n = 5),
APDM Opal
Bilateral:
Thorax, UA (latero-distally) and FA (near wrist)
Velcro strap
Sh ROM
(HT joint angles)
UA FLX-EXT
UA AB-AD
FA PR-SU
FA FLX-EXT Thorax rotation
Thorax FLX-EXT
Children (n = 40)
6.9 ± 0.65 Y
Develop a calibration protocol for Thorax and upper limb motion capture
Roldan-Jimenez 2015, [84]
Full-Text
Inertial sensors built-in a Smartphone (n = 1),
LG Electronics INC, iPhone4
Unilateral:
UA
Neoprene arm belt
Sh ROMsh AB, EXT with wrist in neutral position and elb extendedHS (n = 10)
7 M, 3 F
24.2 ± 4.04 Y
Study humerus kinematics through six physical properties that correspond to angular mobility and acceleration in the three axes of space
Fantozzi 2016, [17]
Full-Text
M-IMU (n = 7),
APDM Opal
Bilateral:
Sternum, UA, FA, back of the hand
Velcro strap
Sh ROM
(HT joint angles),
RMSE <10° (sh FLX-EXT, AB-AD, IER)
BTS SMART-DXSimulated front-crawl and breaststroke swimmingHS (n = 8), M
26.1 ± 3.4 Y
Validate a protocol to assess the 3D joint kinematics of the upper limb during swimming
Meng 2016, [85]
Full-Text
M-IMU (n = 2), Shimmer2rUnilateral:
UA (distal, near elbow), FA (distal, near wrist)
Straps
Sh ROM,
Test2: RMSE = from 2.20° to 0.87°
VICONSh FLX-EXT
Sh AB-AD
Sh IER
Elb FLX-EXT
Elb PR-SU
Test1:
HS (n = 15), M, 19–23 Y
Test2:
HS (n = 5)
Validate an algorithm to improve accuracy on measurements of arm joint angles considering the properties of human tissue
Crabolu 2017, [86]
Full-Text
M-IMU (n = 3), Xsens, MTw2 AwindaUnilateral:
UA, scapula,
Sternum
Velcro strap, double-sided tape, elastic band
GH joint centerMRI acquisitionCross and star motions
(2 joint velocities,
2 range of motions)
HS (n = 5)
3 M, 2 F
36 ± 4 Y
Evaluate accuracy and precision of the GHJC estimation
Kim 2017, [87]
Conference
MYO armband (n = 1): contains 8 EMG and 1 IMU, Thalamic Labs, MYO armbandUnilateral:
UA (near elbow)
Armband
Sh ROMElb FLX (0°,45°,90°) with sh in neutral position, elb FLX (0°,45°,90°) with sh FLX 90°
(sagittal plane)
HS (n = 1)Introduce an algorithm for upper arm and forearm motion estimation using MYO armband
Morrow 2017, [88]
Full-Text
M-IMU (n = 6), APDM OpalBilateral:
FA and UA (lateral), head, sternum
Velcro straps
Sh ROM
(HT joint angles), RMSE = 6.8° ± 2.7° (sh elevation)
Raptor 12 Digital Real Time Motion
Capture System
Peg transfer (to mimic minimally invasive laparoscopy)Surgeon
HS (n = 6)
3 M, 3 F
45 ± 7 Y
Validate a M-IMU based protocol to measure shoulder EL, elbow FLX, trunk FLX-EXT and neck FLX-EXT kinematics
Rose 2017, [89]
Full-Text
IMU (n = 6), APDM OpalBilateral:
UA (lateral), FA (dorsal), sternum, lumbar spine
Straps
Sh ROM
(HT joint angles)
Diagnostic arthroscopy simulationSurgeon
HS (n = 14)
Develop an IMU-based system to assess the performance of orthopaedic residents with different arthroscopic experiences
Tian 2017, [90]
Conference
M-IMU (n = 2), Acc: LIS3LV02D,
Magn: HMC5843,
Gyr: ITG3200
Unilateral:
UA, FA
Straps
Sh ROMVICONSh FLX and elb FLX (sagittal plane)HS (n = 1)Validate data fusion algorithm
Pathirana 2018, [91]
Full-Text
M-IMU (n = 1)Unilateral:
Wrist
Strap
Sh ROMVICON,
Kinect
Forward FLX-EXT
AB-AD
Backward FLX-EXT
Horizontal FLX-EXT
HS (n = 14)
10 M, 4 F
Validate accuracy and robustness of data fusion algorithm using a single sensor to measure shoulder joint angles
  1. acc accelerometer, gyr gyroscope, magn magnetometer, IMU Inertial Measurement Unit, M-IMU Magneto and Inertial Measurement Unit, UA Upper Arm, FA Forearm, ROM Range of motion, HT humerothoracic, GH glenohumeral, Sh shoulder, elb elbow, FLX-EXT flexion-extension, PR-SU pronation-supination, AB-AD abduction-adduction, IER internal-external rotation, RMSE root mean square error, r = correlation, HS Healthy subject, M male, F female, Y Years old