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Abstract
Background  Knee osteoarthritis (KOA) is a prevalent and debilitating condition that markedly affects the sit-to-stand 
(STS) activity of patients, a prerequisite for daily activities. Biomechanical recognition of movements in patients with 
mild KOA is currently attracting attention. However, limited studies have been conducted solely on the observed 
differences in sagittal plane movement and muscle activation.

Aim  This study aimed to identify three-dimensional biomechanical and muscle activation characteristics of the STS 
activity in patients with mild KOA.

Methods  A cross-sectional study was conducted to observe the differences between patients with mild KOA and 
a control group (CG). It was conducted to observe the differences in muscle activation, including root mean square 
(RMS%) and integrated electromyography (items), kinematic parameters like range of motion (ROM) and maximum 
angular velocity, as well as dynamic parameters such as joint moment and vertical ground reaction force (vGRF).

Results  Patients with mild KOA had a higher body mass index and longer task duration. In the sagittal plane, patients 
with KOA showed an increased ROM of the pelvic region, reduced ROM of the hip–knee–ankle joint, and diminished 
maximum angular velocity of the knee–ankle joint. Furthermore, patients with KOA displayed increased knee–ankle 
joint ROM in the coronal plane and decreased ankle joint ROM in the horizontal plane. Integrated vGRF was higher in 
both lower limbs, whereas the vGRF of the affected side was lower. Furthermore, patients showed a decreased peak 
adduction moment (PADM) and increased peak external rotation moment in the knee joint and smaller PADM and 
peak internal rotation moment in the ankle joint. The affected side exhibited decreased RMS% and iEMG values of 
the gluteus medius, vastus medialis, and vastus lateralis muscles, as well as a decreased RMS% of the rectus femoris 
muscle. Conversely, RMS% and iEMG values of the biceps femoris, lateral gastrocnemius, and medial gastrocnemius 
muscles were higher.

Conclusion  The unbalanced activation characteristics of the anterior and posterior muscle groups, combined with 
changes in joint moment in the three-dimensional plane of the affected joint, may pose a potential risk of injury to 
the irritated articular cartilage.
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Introduction
Knee osteoarthritis (KOA) is a prevalent and debilitat-
ing condition characterized by pain, stiffness, weakened 
quadriceps, instability, and impaired functionality [1, 2]. 
It seriously affects patients’ quality of life, with approxi-
mately 650 million people worldwide affected in 2020 [3].

Completion of the sit-to-stand (STS) activity is closely 
related to the quality of life [4, 5]. In daily life, walking 
is a basic activity, but STS and stand-to-sit tasks are the 
prerequisite for and termination of gait, respectively [6]. 
STS movements are also prerequisites for other activi-
ties of daily living and are essential for independent living 
among the elderly [5]. On an average, individuals per-
form approximately 60 STS motions each day [7]. How-
ever, it is a complicated process that requires coordinated 
contraction of the lower extremity and trunk muscles 
and high mechanical requirements [8]. With increasing 
age, STS becomes more demanding for functional daily 
tasks [9, 10], and older people use up to 95% of their knee 
extensor strength when rising from a low-height chair 
[11].

The STS postural transition has been assessed for 
multiple purposes [5], such as the evaluation of fall risk, 
postural control, and lower extremity strength [12–15]. 
One of the five physical function tests recommended for 
people with KOA by the Osteoarthritis Research Soci-
ety International (OARSI) is the 30-s Chair Stand Test 
(30sCST) [16]. In this test, the participant is asked to cor-
rectly perform as many stand-to-sit repetitions as pos-
sible within 30 s. Compared with a single STS task, it is 
easier to fully capture the impaired postural balance and 
biomechanical alterations [17].

Currently, extensive research has been conducted on 
the biomechanical characteristics of the STS task in indi-
viduals with KOA [18]. For instance, Turcot discovered 
a significant increase in the time required to perform 
the STS task in patients with KOA [19]. Furthermore, 
patients with KOA exhibited a increased trunk flexion 
angle and forward center of mass displacement dur-
ing chair rising [18, 20], with men relying more on knee 
power and hip flexion, whereas women relied more on 
hip abductor strength and knee flexion angle [21]. How-
ever, these studies highlighted sagittal changes, whereas 
coronal and horizontal biomechanical changes are rarely 
studied. This may affect the identification and risk assess-
ment of movements in patients with mild KOA.

Thus, this study aimed to analyze the three planes of 
lower limb kinematics and kinetics and the associated 
surface electromyography (sEMG) parameters of patients 
with mild KOA during the STS task. We expect to find 
valuable biomechanical clues for the mild of KOA. We 

hypothesize that patients with KOA exhibit a reduced 
range of motion in the sagittal plane but enhanced mobil-
ity in the coronal and horizontal planes. Furthermore, 
we anticipate an increase in muscle activation and joint 
moment, especially at the knee joint.

Methods
The G*Power software (version 3.1.9.7, Franz Faul, Uni-
versity of Kiel) was used to determine a sample size of 
36 participants. This calculation was based on an effect 
size of 0.8, an alpha probability of 0.05, a beta probability 
of 0.7, and a ratio of 2 for the KOA group to the control 
group (CG).

From October 2022 to April 2023, participants were 
recruited in Guangzhou through advertising and post-
ers. Two distinct participant samples were recruited for 
this study: a KOA group and a CG. Prior to participa-
tion, all participants provided informed consent and were 
provided detailed information regarding the precautions 
of the experiment. This study was conducted as a case–
control investigation and was approved by the Human 
Subject Committee of Guangzhou Sport University 
(2022LCLL-32).

The KOA group included individuals aged between 
55 and 70 years, diagnosed with unilateral KOA with a 
Kellgren–Lawrence grade of I or II based on X-ray [22], 
having a visual analog scale score of ≥ 2 [23], body mass 
index (BMI) of < 28, and with the dominant side affected 
by KOA to avoid laterality interaction. A rheumatologist 
diagnosed KOA in accordance with the European Alli-
ance of Associations for Rheumatology recommenda-
tions [24]. The CG, on the other hand, comprised healthy 
elderly individuals who were age and sex-matched and 
confirmed to have no pathological symptoms of KOA 
[24].

The exclusion criteria were as follows: knee surgery 
within the last 6 months, corticosteroid injection within 
the last 3 months, hip or ankle joint injuries, knee joint 
pain caused by other factors, certain primary or second-
ary muscle-related diseases (certain myopathies, Parkin-
son’s disease, muscle spasms, etc.), and mental disorders 
(depression, obsessive–compulsive disorder, schizophre-
nia/psychosis, etc.).

The 30sCST is a functional assessment that is recom-
mended by OARSI [16] for patients with KOA. It involves 
using a 43-cm (17-inch) chair without armrests or back 
support. During the task, participants are instructed 
to cross their arms over their chest and perform as 
many STS transitions as possible within the given time 
frame. The initiation of the task is marked by a vertical 
ground reaction force of ≥ 10 N. T1 refers to the time of 
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maximum hip flexion angle during the standing phase, 
whereas the end of the task is determined by the first 
transition of hip flexion angular velocity from negative to 
positive after reaching the minimum knee flexion angle 
[25].

In this study, kinematic data were captured using a 
Vicon system (Nexus Vicon, Oxford, UK, containing 10 
infrared induction cameras) at a frequency of 100  Hz. 
The Vicon system relies on retroreflective markers to rec-
ognize body movement trajectories. The placement of 
these markers is illustrated in Fig. 1 (A). Two force plat-
forms (AMTI OR6-7, Watertown, MA, USA, 60 × 40 cm) 
were embedded in the floor to capture kinetic parameters 
during the task at a frequency of 1000 Hz.

Muscle contraction electrical activity and sequence 
data were recorded using a 16-channel wireless sEMG 
system (Trigno Wireless EMG System, Delsys Inc., 
Natick, MA, United States) at a frequency of 2000  Hz. 
The muscles examined are illustrated in Fig.  1 (B). Skin 
preparation and sensor placement were conducted in 
accordance with the Surface ElectroMyoGraphy for the 
Non-Invasive Assessment of Muscles guidelines [26].

Muscle normalization was conducted using the maxi-
mum voluntary isometric contraction test, the estab-
lished gold standard procedure [27]. During each muscle 
normalization test, participants were guided, through 
visual and verbal stimuli, to gradually increase muscle 
strength, reach maximum effort, hold for 3–5 s, and then 
quickly relax [17]. The normalization test for each muscle 
was repeated three times, with a 60-s rest period between 
each test.

For patients with KOA, data were collected from the 
affected side. For the CG, data were obtained from the 
dominant leg, identified by asking participants three 
standard questions: (1) “Which leg would you use to kick 

a ball?“, (2) “Which leg would you step on a worm with?“, 
and (3) “Which leg would you use to draw a diamond on 
the ground?” [28].

Participants underwent three rounds of testing with a 
60-s rest between each test. The participants conducted 
a practice session to minimize any initial bias and ensure 
proficiency in the movements before the formal testing. 
Data collection occurred during the stable phase of par-
ticipant movements lasting 5–25  s. The Vicon system 
captured the data, which was then processed in Visual 3D 
(V6, C-motion Inc., Germantown, MD, United States). 
All data from the experiment were normalized to 101 
data points, representing each percentage of the mission 
cycles from 0 to 100%.

SPSS 26.0 was used for data analysis. The Shapiro–Wilk 
test was used to verify data normality. Data that did not 
follow a normal distribution, including integrated vertical 
ground reaction force (vGRF), range of motion (ROM) of 
the pelvis in the sagittal plane, joint moments, and sEMG 
data, were transformed using a logarithmic transforma-
tion to approximate a normal distribution. Unpaired 
Student’s t-test was used to evaluate between-group dif-
ferences in the demographic characteristics and result 
parameters. Statistical significance was set at p < 0.05 for 
all comparisons.

Results
Demographic data
A total of 24 patients (16 women) with mild KOA and 12 
healthy individuals (8 women) matched for age and sex 
were enrolled. The two groups were not significantly dif-
ferent in terms of the demographic data, except for BMI 
[29] (Table 1)

Fig. 1  (A). Positions of Retroreflective Markers. IAS, Anterior superior iliac spine. IPS, Posterior superior iliac spine. TH1-4 Cluster, Cluster of four markers 
placed on the lateral surface of the thigh. FLE, Lateral epicondyle. FME, Medial epicondyle. SK1-4 Cluster, Cluster of four markers placed on the lateral 
surface of the shank. FAL, Lateral prominence of the lateral malleolus. TAM, Medial prominence of the medial malleolus. FCC, Aspect of the Achilles tendon 
insertion on the calcaneus. FM1, Dorsal margin of the first metatarsal head. FM5, Dorsal margin of the fifth metatarsal head. (B). Placement of Sensors 
GMed, Gluteus medius. GM, Gluteus maximus. BF, Biceps femoris. ST, Semimembranosus. LG, Lateral gastrocnemius. MG, Medial gastrocnemius. VL, Vastus 
lateralis. RF, Rectus femoris. VM, Vastus medialis. TA, Tibialis anterior
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Temporal and kinematic parameters
Table 2 indicates that patients with KOA had longer task 
durations, however, no difference in T1 onset time was 
observed. In the sagittal plane, patients with KOA had 
a greater ROM of the pelvis, smaller ROM of the hip–
knee–ankle joint, and smaller maximum angular velocity 
of the knee–ankle joint. Furthermore, patients with KOA 
had a greater knee–ankle joint ROM in the coronal plane 
and a smaller ankle joint ROM in the horizontal plane.

Kinetic parameters
During the STS task, patients with KOA had a higher 
integrated vGRF in both lower limbs compared with the 
CG, and the vGRF of the affected side was lower (Fig. 2). 
Additionally, during the STS task, patients with KOA had 
a smaller peak adduction (PADM) and larger peak exter-
nal rotation moment (PERM) in the knee joint, whereas 
the PADM and peak internal rotation moment (PIRM) 
of the ankle joint were smaller. However, there were no 
significant changes in the hip joint moment of the two 
groups (Fig. 3).

sEMG data
Compared with the CG, the affected side of patients with 
KOA had a smaller root mean square percentage (RMS%) 
and integrated EMG (iEMG) values of the gluteus maxi-
mus (GM), gluteus medius (GMed), vastus lateralis, and 
vastus medialis muscles and a smaller RMS% of the rec-
tus femoris (RF) muscle (Fig. 4). However, the RMS% and 
iEMG values of the biceps femoris (BF), lateral gastroc-
nemius (LG), and medial gastrocnemius (MG) muscles 
were all higher.

Discussion
The STS task, a pivotal activity for upright mobility [8], 
significantly influences functional mobility, quality of life, 
and independence in patients with KOA [7, 9, 30]. This 
cross-sectional investigation aimed to elucidate the bio-
mechanical alterations across three planes and assess 

Table 1  Descriptive participant demographics (x̄ ± s)
KOA group
(n = 24)

Control group
(n = 12)

P-value

Age (years) 63.63 ± 4.30 60.92 ± 3.53 0.07
Height (cm) 160.49 ± 7.99 164.08 ± 7.21 0.20
Body Mass (kg) 61.67 ± 6.85 56.82 ± 7.50 0.06
BMI (kg/m2)* 23.93 ± 1.94 21.01 ± 1.31 0.00
K-L grade I/grade II 5/19 \ \
BMI: body mass index

*means p < 0.05

Table 2  Temporal and ROM Parameters between KOA and 
Control Group (x̄ ±s)

KOA group
(n = 24)

Control group
(n = 12)

P-value

Temporal Parameters
Sit to Stand time (s)* 1.40±0.039 1.31±0.26 0.04
T1 time (%) 36.74±5.07 35.33±7.54 0.08
ROM(°) in the Sagittal plane
Pelvis†* 3.09±2.18 2.61±1.42 0.04
Hip* 73.26±11.75 76.92±9.83 0.01
Knee* 83.09±7.67 86.78±9.06 0.00
Ankle* 20.62±5.55 22.33±3.94 0.00
ROM(°) in the Coronal plane
Pelvis 26.83±7.24 25.31±7.50 0.07
Hip 6.42±3.04 6.63±2.43 0.50
Knee* 8.17±3.06 7.37±3.80 0.04
Ankle* 5.29±2.66 4.29±1.93 0.00
ROM(°) in the Horizontal plane
Pelvis 3.79±2.27 3.43±1.45 0.13
Hip 12.46±3.44 11.49±5.39 0.09
Knee 8.42±3.42 8.78±3.43 0.36
Ankle* 5.13±1.50 5.54±1.54 0.02
Peak Angular Velocity (deg/s) in the Sagittal plane
Hip 56.47±13.98 55.63±20.06 0.69
Knee* 176.31±38.33 191.58±37.99 0.00
Ankle* 23.15±6.63 25.88±8.95 0.01
T1 time (%): The percentage of T1 occurrence time during the STS task

*means p < 0.05

† means that the original data has already been logarithmically transformed

Fig. 2  Comparison of vGRF parameters between the KOA group and the CG (± MDE). *means p < 0.05
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muscle activation disparities during the STS task in KOA 
patients. Findings indicated that KOA patients required 
extended durations for task completion, demonstrat-
ing diminished biomechanical adaptations in the sagittal 
plane and augmented modifications in the coronal plane, 
as evidenced by kinematic parameters. Additionally, 
variations in muscle activation levels and joint moments 
were evident between the cohorts.

Consistent with preceding research [18, 19], the 
extended task duration corroborates with limitations 
in physical functionality [21], serving as an indica-
tor of functional mobility deficits [31] and an elevated 
fall risk [13]. Turcot et al.‘s study underscores a signifi-
cant association between pain intensity and the average 
STS task completion time [19]. This extended duration 
and delayed T1 onset potentially mitigate pain, neces-
sitating prolonged muscle activation for joint stiffness 
maintenance.

Echoing earlier findings [18, 32], the results of this 
study further reveal that KOA patients exhibit reduced 
ROM across all lower limb joints, barring the pelvis, 
and diminished maximum angular velocities at the knee 
and ankle joints. As highlighted by Patsika, diminished 
knee and ankle angular velocities in KOA patients are 
intricately linked to compromised strength, particu-
larly within the knee extensor muscles [33]. Knee exten-
sors have been identified as playing a paramount role, 
surpassing other major lower limb muscles in STS and 
lower extremity muscle activities [34, 35], with quadri-
ceps weakness being a common manifestation in KOA 
patients [36]. Moreover, the observed sagittal pelvic 
ROM reduction may relate to decreased RF muscle 
strength. Prior research indicates an inverse relation-
ship between knee extensor strength and trunk inclina-
tion [37], necessitating greater pelvic flexion angles to 
compensate for inadequate knee extensor strength [38], 
thereby minimizing knee exertion during the transition 
from sitting to standing [20].

In contrast, KOA patients were found to have height-
ened BF muscle activation compared to the CG, align-
ing with previous studies [33, 39]. This could lead to 
significantly increased co-contraction of knee muscles 
in the affected limb versus the CG [4], suggesting mus-
cle co-contraction as a bilateral stabilization strategy. 
While elevated coactivation levels enhance joint stabil-
ity and mitigate pain from extreme joint positions [40], 
they also amplify knee joint compressive loads [41, 42], 
potentially accelerating KOA’s structural progression 
[43]. The result of this study also concurs with the obser-
vation that except for the PADM, patients with KOA have 
greater knee joint moment than the CG. Additionally, the 
decreased ROM of the lower limb joints in the sagittal 
plane may be related to the higher co-contraction of the 
knee muscles [39].

Moreover, KOA patients displayed reduced peak vGRF 
on the affected side, with an increasing tendency on the 
contralateral side, relative to the CG. This aligns with 
studies showing patients with severe unilateral KOA 
bearing greater loads on the unaffected limb [19, 44], 
possibly due to pain avoidance behaviors [45], leading to 
greater lateral trunk flexion [19] and reduced PADM of 
the knee and ankle joints on the affected side. Notably, in 

Fig. 3  Comparison of Joint Moments Between the KOA Group and the 
CG ( ± MDE). All data were subjected to logarithmic transformation be-
fore statistical analysis. *means p < 0.05. (A), Hip Joint Moment; (B), Knee 
Joint Moment; (C), Ankle Joint Moment. PEM: peak extension moment; 
PFM: peak flexion moment; PABM: peak abduction moment; PADM: peak 
adduction moment; PERM: peak external rotation moment; PIRM: peak in-
ternal rotation moment
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this study, patients showed increased bilateral integrated 
vGRF, possibly due to the prolonged task duration, with 
significantly higher knee flexion and adduction moments 
on the unaffected side [44], indicating KOA’s progres-
sive impact on the contralateral limb. It is well known 
that contraction of the hip extensor muscle is essential 
for maintaining trunk stability and controlling the speed 
of movement [46]. The results of this study show that 
patients with KOA have lower activation levels in the 
GMed and GM muscles of the affected lower limb, which 

could be attributed to the fact that the CG had a greater 
movement speed and more weight-bearing on their dom-
inant side, resulting in a stronger activation of the GM 
and GMed muscles [47].

In the coronal plane, KOA patients demonstrated an 
increased ROM at the knee and ankle joints but reduced 
PADM during movement compared to controls. An 
increased ROM suggests compromised balance, a con-
sequence of asymmetric loading [47]. Enhanced BF, LG, 
and MG muscle activation could stiffen the knee joint, 

Fig. 4  Comparison of muscle activation level between the KOA group and the CG (± MDE). All data were subjected to logarithmic transformation before 
statistical analysis. * mean RMS% between the two groups is p < 0.05. # mean integrated EMG (iEMG) between the two groups is p < 0.05. (A), Gluteus 
medius (GMed) of affected side; (B), Gluteus medius (GMed) of non-affected side; (C), Gluteus maximus (GM) of affected side; (D), Gluteus maximus (GM) 
of non-affected side; (E), Biceps femoris (BF); (F), Semimembranosus (ST); (G), Lateral gastrocnemius (LG); (H), Medial gastrocnemius (MG); (I), Vastus late-
ralis (VL); (J), Rectus femoris (RF); (K), Vastus medialis (VM); (L), Tibialis anterior (TA)
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potentially escalating knee muscle co-contraction and 
joint damage [41, 42]. On the axial plane, reduced ROM, 
PIRM of the ankle, and increased PERM of the knee were 
observed. Previous studies have noted the importance of 
tibialis anterior (TA) muscle contraction for foot stabili-
zation and forward trunk movement [48, 49], with gas-
trocnemius and TA muscle co-contraction being crucial 
for balance and ankle stability [50, 51]. Abnormal ROM 
and joint moment in the ankle joint may be associated 
with impaired LG and MG muscle activation.

This study posits that milder damage in participants, 
resulting in less pronounced biomechanical parame-
ter differences on the horizontal plane, could be due to 
smaller movements and all participants being first- or 
second-degree sufferers. Experimental outcomes sug-
gest that patients with mild KOA may adopt asymmetric 
loading patterns on the lower limbs to circumvent pain, 
leading to altered joint moments, ROM, and muscle 
activation levels, thereby exacerbating biomechanical 
KOA progression risks, and affecting contralateral limb 
disease.

Compared to previous studies, this research system-
atically explores biomechanical alterations in mild KOA 
patients across three planes, incorporating muscle activa-
tion levels. Nonetheless, the absence of sex differentiation 
due to a limited sample size and ungraded KOA sever-
ity limits detailed insights into KOA’s early alterations. 
These observations underscore the critical nature of bio-
mechanical changes and muscle activation discrepancies 
during the STS task in KOA patients, shedding light on 
their functional limitations and adopted strategies. Such 
insights are invaluable for crafting effective interventions 
to enhance KOA patients’ functional mobility and life 
quality.
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