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Abstract 

Background:  Contemporary strategies for prehabilitation and rehabilitation associated with total knee arthroplasty 
(TKA) surgery have focused on improving joint range-of-motion and function with less emphasis on neuromuscular 
performance beneficially affecting joint stability. Furthermore, prehabilitation protocols have been found to be too 
long and generic-in-effect to be considered suitable for routine clinical practice.

Methods:  A pragmatic exploratory controlled trial was designed to investigate the efficacy of a novel, acute preha-
bilitative neuromuscular exercise-conditioning (APNEC) in patients electing TKA. Adults electing unilateral TKA were 
assessed and randomly allocated to exercise-conditioning (APNEC, n = 15) and usual care (Control, n = 14) from a 
specialised orthopaedic hospital, in the United Kingdom. APNEC prescribed nine stressful exercise-conditioning ses-
sions for the knee extensors of the surgery leg, accrued over one week (3 sessions·week−1; 36 exercise repetitions in 
total; machine, gravity-loaded) and directly compared with usual care (no exercise). Prescribed exercise stress ranged 
between 60%—100% of participant’s daily voluntary strength capacity, encompassing purposefully brief muscular 
activations (≤ 1.5 s). Baseline and follow-up indices of neuromuscular performance focusing on muscle activation 
capacity (electromechanical delay [EMD], rate of force development [RFD] and peak force [PF]) were measured 
ipsilaterally using dynamometry and concomitant surface electromyography (m. rectus femoris[RF] and m. vastus 
lateralis[VL]).

Results:  Group mean ipsilateral knee extensor muscular activation capacity (EMDRF [F(3,57) = 53.5; p < 0.001]; EMDVL 
[F(3,57) = 50.0; p < 0.001]; RFD [F(3,57) = 10.5; p < 0.001]) and strength (PF [F(3,57) = 16.4; p < 0.001]) were significantly 
increased following APNEC (Cohen’s d, 0.5—1.8; 15% to 36% vs. baseline), but unchanged following no exercise 
control (per protocol, group by time interaction, factorial ANOVA, with repeated measures), with significant retention of 
gains at 1-week follow-up (p < 0.001).

Conclusions:  The exploratory APNEC protocol elicited significant and clinically-relevant improvement and its reten-
tion in neuromuscular performance in patients awaiting TKA.

Trial registration:  (date and number): clinicaltrial.gov: NCT03​113032 (4/04/2017) and ISRCT​N7577​9521 (3/5/2017).

Keywords:  Pre-surgery training, Total knee arthroplasty, Joint replacement, Sensorimotor, Neuromuscular, Exercise-
conditioning
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Background
Many recipients of total knee arthroplasty (TKA) are 
content with the outcome of surgery as an optimal solu-
tion for pain relief compared to physical rehabilitation. 
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Exercise conditioning’s rationale is both intuitively and 
pragmatically appealing because preoperative enhance-
ments to functional and fitness capabilities should lead 
to patients experiencing better surgical outcomes and 
reduced risks of further injury [1] and greater risk of 
falls [2, 3]. Amongst heterogeneous preoperative exer-
cise methodologies and levels of evidential quality within 
meta-analytical reviews, significant improvements (small 
to moderate effects sizes) have been observed in postop-
erative function, quadriceps strength, and length of stay 
in patients undergoing TKA [4]. Similarly, while preop-
erative progressive resistance training  (PRT) has been 
shown to be safe and not liable to exacerbate knee joint 
pain and effusion [5], the methodological quality of evi-
dence had rendered the effectiveness of PRT before and/
or after TKA as inconclusive [6]. Nevertheless, other 
reports support the use of short-term (4-week) high-
intensity resistance training before TKA [7] and capable 
of inducing long-lasting effects on muscle strength [8], 
but not necessarily on functional performance [8] or 
other patient-reported outcomes [7]. Pronounced gains 
in functional, neuromuscular performance capabilities 
and higher patient satisfaction levels [9, 10] in related 
orthopaedic applications involving innovative and physi-
ologically-principled resistance conditioning indicate the 
potential for improvement on contemporary approaches 
in which purposely-designed programmes can still have 
clear benefits for patients awaiting TKA.

Thus, while there is emerging evidence for the efficacy 
of pre-operative resistance training in contemporary lit-
erature for improving strength performance, we would 
argue that the exercise protocols that have been tested 
thus far [7, 8, 11, 12] may not have not been optimal with 
regard to their characteristics of physiological stress. As 
such, we hypothesise that a new approach incorporating 
ideals for neuromuscular conditioning may elicit more 
benefits.

Recent exploratory work in asymptomatic adults has 
shown efficacy within condensed, physiologically-princi-
pled approaches to conditioning [13]. As such, promot-
ing short durations of muscle activation’ patterns during 
exercise in order to minimise the likelihood of pain noci-
ceptor’ activation (< 1.5  s [14]) and unwanted provo-
cation of autogenic and arthrogenic inhibition may be 
beneficial. Short durations of exercise conditioning may 
offer benefits in terms of efficacy, patients’ burdens and 
their adherence to prescribed programmes of exercise.

This paper reports on the exploratory findings of ipsi-
lateral responses to acute prehabilitative neuromuscular 
exercise-conditioning (APNEC) in order to characterise 
its efficacy in patients awaiting TKA. It is part of a larger 
study investigating conditioning effects on both ipsilat-
eral and contralateral limbs. Our hypothesis was that 

an acute and short dosage (one week, intermittently) of 
physiologically-principled exercise-conditioning, featur-
ing high intensity (60% to 100% of daily strength capac-
ity) and short durations of muscular activation, would 
show efficacy for improving neuromuscular performance. 
This study aimed to identify the efficacy of APNEC for 
improving neuromuscular performance capacities in 
patients awaiting TKA. Additionally, the retention of 
effects was explored at one week following cessation of 
APNEC.

Methods
Study design and participants
A UK single-centre NHS randomised controlled trial 
was registered (clinicaltrial.gov: NCT03113032 and 
ISRCTN75779521) and given Research & Develop-
ment (RJAH/RL1 715) and ethical approval (South East 
Scotland Research Ethics Committee 01 [IRAS 198,930; 
REC reference 17/SS/0005]). The trial received endorse-
ment by means of routine patient and public involvement 
meetings at the Robert Jones and Agnes Hunt (RJAH) 
Orthopaedic NHS Foundation Trust. Inclusion criteria 
involved patients over 18  years, diagnosed with severe 
OA of the knee and undergoing primary TKA surgery. 
Patients suffering from rheumatic or ongoing neuro-
logical disorders, conditions affecting function such as 
amputation, reduced mental capacity affecting abilities to 
follow prescribed exercises, or undergoing TKA for dis-
eases other than OA, were excluded. Patients recording 
previous joint replacement surgery (contralateral knee, or 
hip) were not excluded.

The screening of the patients was undertaken within 
the hospital’s outpatient department by the clinicians 
having oversight (PG; AB). Inclusion criteria involved 
patients over 18 years, diagnosed with severe OA of the 
knee and undergoing primary TKA surgery. Patients gave 
written informed consent prior to baseline assessment 
(T1). Allocation to two groups (block randomisation [n, 
2]) was performed subsequently by an independent stat-
istician (randomization.com). Group allocation was not 
concealed from patients or from those overseeing the 
patients’ testing administration and conditioning within 
this explorative controlled trial.

The APNEC group (n = 15) underwent experimental 
intervention to the ipsilateral leg, receiving nine, 20-min 
focal exercise-sessions delivered on alternate days (3 ses-
sions per week and 3 sessions per day) during a single 
week, with clinical oversight (AMR). The Control group 
(n = 14) followed current practice (no exercise).

Assessment procedures and data capture
Participants were assessed ipsilaterally on four separate 
occasions that coincided with health care appointments 
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for patients: T1 (baseline; ≈ 11 weeks prior to surgery, at 
initial clinical consultation, including familiarisation with 
assessment procedures and apparatus), T2 (pre-inter-
vention; two weeks pre-surgery, at appointment for pro-
phylactic infection control), T3 (48  h post-intervention; 
one week pre-surgery, immediate APNEC effects) and 
T4 (one week after cessation of intervention; retention of 
effects at TKA surgery).

Acute prehabilitative neuromuscular exercise‑conditioning 
(APNEC)
APNEC prescribed nine stressful exercise-conditioning 
sessions for the ipsilateral knee extensors, accrued over 
one week (3 exercise days [24 h recovery]; 3 sessions per 
day [typically, 10.00 am; 1.00  pm; 4.00  pm]; 1 exercise 
per session; 4 repetitions per exercise, with 20  s inter-
repetition rest periods [15] [36 repetitions in total] on a 
calibrated machine, gravity-loaded [Life Fitness, model 

number FZLE-500023; www.​lifef​itness.​com] (Fig.  1a) 
and directly compared with usual care (no exercise). 
Prescribed exercise stress ranged between 60%—100% 
of participant’s daily voluntary strength capacity (one-
repetition maximal [1RM], assessed using 2 or 3, 2-s 
concentric contractions and 15  min prior to first daily 
APNEC session) (Table  1), encompassing purposefully 
brief muscular activations (∼1.5  s). APNEC sessions 
were preceded by standardised warm-up (walk: ≈ 150 m, 
waiting area to gym) and recovery (240  s [16]), with an 
exercise repetition’ movements practised twice using an 
unloaded lever-arm (Fig. 1b, c, d and e), prior to exercise. 
Physiological stimuli for adaptation were delivered by 
micro-cyclical patterning of exercise intensity, recovery 
and progression, featuring high to low intra-day exercise 
intensity amongst daily sessions. Physiological stimuli 
for adaptation were delivered by micro-cyclical pat-
terning of exercise intensity, recovery and progression, 

Fig. 1  Knee extensor machine and settings a side view b knee position 1–10; this also helped secure the 90◦ starting position of the knee. c front 
view d padded leg rest setting: Small, Medium, Large and Extra large; this position determined where the padded leg rest will place pressure on 
the shin and was normally placed above the ankle e back seat rest setting 1–10; this was normally positioned so that the back of the knee rested 
comfortably over the machine’s seat-edge, with the shin hanging perpendicularly to the ground

http://www.lifefitness.com
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featuring high to low intra-day exercise intensity amongst 
daily sessions. The clinical model for APNEC had been 
derived and adapted from pilot research work involving 
micro- and meso-cyclical training theory and practices 
amongst elite professional soccer [17]. Figure 2 describes 
step-by-step, the performance of a single APNEC exer-
cise repetition.

Concentric muscle actions (patient self-paced) 
fully extended ipsi- and contralateral knees against 
the machine’s gravity-loaded lever-arm (Fig.  2a, 
start position). Bilateral full knee extension (Fig.  2b) 

momentarily preceded voluntary self-paced ipsilat-
eral knee flexion to 45°, away from the lever-arm with 
maintained full contralateral knee extension (Fig.  2c). 
Contralateral knee extensor relaxation prompted the 
lever-arm’s unresisted gravitational loading (Fig.  2d). 
Ipsilateral extensor’s eccentric muscle action attempted 
to arrest and counteract the lever-arm’s downward tra-
jectory very briefly (∼ 1.5  s) at ≈ 45° (Fig. 2e). A rep-
etition was completed by the involved musculature’s 
relaxation and concomitant load-dropping to its start-
ing position (Fig. 2f ).

Table 1  An example of the micro-cyclical loading used during the APNEC delivery for participants randomised to this group. The 
nine sessions (S1—S9) reflect loading-progression delivered over a 1-week period (T2 to T3), with rest days interspersed amongst 
conditioning days

Session (S) Monday (%MVC) Tuesday Wednesday 
(%MVC)

Thursday Friday (%MVC)

S1 65% Rest S4 70% Rest S7 60%

S2 100% Day S5 90% Day S8 80%

S3 85% S6 80% S9 70%

Fig. 2  APNEC exercise movement. Please see main text for full explanation
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Assessment of neuromuscular performance
Neuromuscular performance was assessed ipsilater-
ally focusing on muscle activation capacity (electrome-
chanical delay [EMD]; rate of force development [RFD]) 
and knee extension strength (peak force [PF]) using 
dynamometry and concomitant surface electromyogra-
phy (m. rectus femoris[RF] and m. vastus lateralis[VL]). Par-
ticipants were seated on a custom-built dynamometer, 
incorporating a load cell (range 3 kN; Tedea-Huntleigh, 
Cardiff, UK) [18, 19]. Knee and hip joint angles were 
standardised at 45° (0° representing full extension) [20] 
and 110° [21], respectively. Electromyographic (EMG) 
recordings were obtained using bipolar rectangular sur-
face electrodes (self-adhesive, Ag/AgCl; 10 mm diameter; 
Unilect, UK), applied longitudinally and parallel to the 
muscle fibres’ orientation (30  mm inter-electrode dis-
tance [9, 18]; < 5 kΩ impedance [9, 22, 23]). EMG signals 
were pre-amplified (1902 Mk IV; Cambridge Electronic 
Design, UK; input impedance 10,000 MΩ, CMRR 100 dB 
gain of 1000) and filtered (Butterworth 2nd-order, low-
pass, 1 kHz cut-off frequency).

Participants received an assessor’s verbal signal to acti-
vate (as rapidly and forcefully as possible) and relax their 
knee extensors (after 2 s to 3 s of activation), undertaking 
three static contractions separated by 10-s rest periods. 
Interrogation of raw EMG and concomitant force–time 
records (exceeding 95% confidence limits of the back-
ground electrical noise amplitude) [18, 19], identified 
peak performance of EMD(RF and VL) (shortest latency 
[ms]), PF (highest force response [N]) and RFD (maxi-
mum rate at which force is increased (N·s−1) amongst 
the three trials. Prior to the assessment, participants 
warmed-up via subjectively-judged static contractions 
(~ 2 s; 10 s, inter-repetition neuromuscular recovery [15]) 
at 25% (2 repetitions), 50%, 75% and 100% of maximum 
voluntary contraction [18, 19].

Statistical analysis
Group means (± SD) described outcome scores. Sepa-
rate factorial (group [APNEC; Control] x time [T1; T2; 
T3; T4]) analyses of variance (ANOVAs), with repeated 
measures for time, tested hypotheses relating to EMDRF, 
EMDVL, RFD and PF using per protocol analyses (SPSS 
Vn. 23, IBM SPSS Illinois, USA). A priori reverse Helm-
ert orthogonal difference testing located anticipated 
time-specific effects. Any violations of assumptions 
underpinning the use of ANOVA (for example, sam-
pling from a normally distributed population, sphericity) 
were countered using Greenhouse–Geisser (GG) adjust-
ments. Statistical significance was accepted at p < 0.05, 
with Cohen’s d quantifying relative effect size (ES: 0.2, 0.5 
and 0.8 considered in general to be ‘small’, ‘medium’ and 
‘large’ effects, respectively) and percent change relative 

to ‘baseline’ performance offered as an additional marker 
of change in performance. A priori experimental design 
sensitivity estimation offered an approximate statisti-
cal power of 0.7 for avoiding intrusion of type-II errors 
for a medium relative effect size (Cohen’s d, 0.5) in the 
study’s primary outcome, EMD, and at its end-point (T4), 
requiring an approximate sample size of n = 12 within 
each group (www.​sport​sci.​org).

Results
Twenty-nine patients from 238 candidates electing uni-
lateral TKA (standardised implant procedure [MRK™]) 
on orthopaedic waiting-lists (May 2017 to April 2018) 
participated. Statistical analyses was undertaken on data 
from the 21 patients who completed the study protocol 
(Fig. 3: CONSORT enrolment; Table 2: Per protocol par-
ticipants’ characteristics).

Neuromuscular performance
Factorial interactions (group x time) showed group mean 
ipsilateral knee extensor muscular activation capacity 
(EMDRF [F(3,57) = 53.5; p < 0.0005]; EMDVL [F(3,57) = 50.0; 
p < 0.001]; and RFD [F(3,57) = 10.5; p < 0.001]) and strength 
(PF [F(3,57) = 16.4; p < 0.001]) were significantly increased 
immediately following APNEC, but unaffected by no 
exercise control (Table  3). Performance improvements 
between baseline and immediately after APNEC (EMDRF 
[Cohen’s d, 0.62; 25.5%; F(1,19) = 53.5; p < 0.0005, a priori 
difference contrast); EMDVL [d, 0.66; 26.0%; F(1,19) = 50.0; 
p < 0.0005]; RFD [d, 0.54; 13.2%; F(1,19) = 10.5; p < 0.001]; 
PF [d, 0.55; 18.7%; F(1,19) = 16.4; p < 0.001]) were promi-
nent, contributing most to the overall ANOVA interac-
tions, and were retained substantively at one week after 
APNEC’s cessation (T4: EMDRF [Cohen’s d, 0.87; 14.7% 
vs. baseline; F(1,19) = 26.5; p < 0.001, a priori difference 
contrast]; EMDVL [d, 0.80; 15.0%; F(1,19) = 26.8; p < 0.001]; 
RFD [d, 0.39; 9.5%; F(1,19) = 8.2; p < 0.001]; PF [d, 0.46; 
16.1%; F(1,19) = 7.4; p < 0.001]) (Fig. 4).

Discussion
This exploration study of prehabilitative neuromuscu-
lar exercise-conditioning in patients electing unilateral 
TKA showed the protocol’s efficacy for improving neu-
romuscular performance capacities, with substantial 
gains in peak ipsilateral knee extensor muscular activa-
tion characteristics (EMD [Cohen’s d, 0.62 – 0.66; 25.5 – 
26.0% and RFD [d, 0.54; 13.2%]) and strength (PF [d, 0.55; 
18.7%]) following APNEC. Concomitant responses of 
participants acting as controls were trivial (d < 0.2; < 3.0%; 
ns) and reflected contemporary practice in which no 
structured exercise was undertaken and only variations 
in activities of daily living might have elicited serendipi-
tous conditioning stimuli.

http://www.sportsci.org
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Optimum dose–response characteristics for APNEC 
await scrutiny, but this formulation involving a short 
period of dosage, high intensity and purposely brief 
nociceptor response-evading muscular actions, elic-
ited responses exceeding statistical, precision and reli-
ability criteria for the selected indices of neuromuscular 

performance (≈ 4%—8%) [19, 20] and appears to offer 
important clinical relevance in counteracting persistent 
performance deficits [24, 25].

Relevant comparable potency data amongst the con-
temporary literature is elusive for all outcomes. Nev-
ertheless, peak strength gains following APNEC (PF [d, 

Fig. 3  Study’s flow-chart of participants within the study based on the CONSORT guidelines for longitudinal studies

Table 2  Per protocol participants’ characteristics

Characteristic All (n = 21) APNEC (n = 9) Control (n = 12)

Age (years) 71.1 ± 8.1 67.3 ± 6.1 74.0 ± 8.2

BMI (kg·m−2) 28.5 ± 10.4 26.8 ± 10.9 29.7 ± 9.9

Surgery waiting time (days) 83.4 ± 49.8 93.0 ± 54.6 82.8 ± 46.4

Right knee operated (number) 11.0 3.0 8.0

Previous arthroplasty (number) 7.0 1.0 6.0

MRK™ (number) 21.0 9.0 12.0
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0.55]) matched or exceeded those amongst studies of 
established rehabilitative conditioning in patients under-
going TKA surgery [26, 27] or following conservative 
treatment [28, 29] (d ≤ 0.50). APNEC’s capability for 
improving several independent facets of neuromuscular 
performance (correlations amongst EMD, RFD and PF, at 
baseline: r < 0.40; ns) could be deployed usefully as a stra-
tegic alternative to aspects of contemporary prehabilita-
tive practices associated with TKA, within end-stage OA 
in general, or serve as a specific augmentation. In the 
absence of definitive minimal clinically-important differ-
ence criteria [30], it was notable that gains for all APNEC 
patients exceeded the minimum detectable change crite-
ria for EMD ([3.8 ms; 19) and the performance changes 
of all control patients (Fig. 5). Retention of gains in peak 
ipsilateral knee extensor muscular activation character-
istics (EMDRF [Cohen’s d, 0.91 – 0.96; 53.5%, proportion 
of gain as a percentage]; EMDVL [Cohen’s d, 0.96; 53.9%] 
RFD [d, 0.43; 72.8%]) and strength (PF [d, 0.41; 80.0%]) 
following APNEC’s cessation were substantial, signifi-
cantly better than baseline performance scores (p < 0.05) 
and had similarly exceeded the relevant minimum detect-
able change criteria.

There is emerging evidence for the efficacy of pre-oper-
ative resistance training in the contemporary literature 
for improving strength performance, including some pro-
tocols using relatively short durations (4 weeks) [7, 8, 11, 
12]. By contrast, the efficacy of APNEC was derived from 
a more notably truncated protocol involving just nine 
stressful exercise-conditioning sessions for the ipsilateral 
knee extensors, accrued over one week, but encompass-
ing deliberately brief muscular activations.

The APNEC protocol’s short duration emphases its 
potential for utility within clinical time-logistics. It also 
favours neural mechanisms rather than morphological 
adaptation [31] underpinning the gains in capabilities. 
There is  neuromuscular performance capabilities. There 
is potential for APNEC’s characteristically brief, eccen-
tric muscular actions to provoke favourable changes in 
neural activation patterns [32], with increased rates of 
motor unit firing [28]. Autogenic and arthrogenic inhibi-
tion may be reduced consequently by increased rates of 
motor firing, provoking sympathetic concomitant gains 
in neuromuscular performance [29, 32]. The complemen-
tarity of APNEC’s brief but intense muscle actions in mit-
igating nociceptor activation and potentiating increased 
activity amongst previously inhibited motor units may be 
crucial for efficacy in this clinical population. Purposely 
sequenced delivery of episodes of APNEC might feasibly 
offer potentiated effects on neuromuscular performance 
capacities in this clinical population, which could counter 
clinical criticisms of contemporary prehabilitative exer-
cise programmes and their ability to elicit only subtle and 
transient improvements [33]. Future well-controlled clin-
ical trials should continue to explore optimal modes and 
dose-responses of APNEC delivery in this population, 
which may occur in the absence of competing physiologi-
cal conditioning stimuli, such as concomitant strength- 
and endurance-related exercise stresses [9].

Limitations to this study were related to its delivery and 
design. Logistical and ethical constraints had precluded 
assessments in the immediate period after surgery, and 
evaluation of longer-term decay patterning of APNEC 
gains in  neuromuscular performance amongst complex 

Table 3  Group mean scores (± SD) for per protocol assessments at baseline (mean T1, T2), T3 and T4 for the leg undergoing surgery in 
the APNEC (n = 9, for all time points of assessment [5 males; 4 females]) and Control (n = 12, for all time points of assessment [7 males; 
5 females]) groups. Calculated effect sizes (Cohen’s d) and percentage changes are relative to baseline performance

Key: EMD electromechanical delay (ms), RF rectus femoris muscle, VL vastus lateralis muscle, RFD rate of force development (N·s.−1), PF peak force (N)

Baseline T3 T4 ES ES
Outcome Baseline – T3 Baseline – T4

EMDRF (ms)
  APNEC 45.3 ± 7.2 33.5 ± 6.0 38.4 ± 7.1 1.78 0.96

  Control 45.0 ± 7.7 43.6 ± 7.5 45.3 ± 7.1 0.20 0.02

EMDVL (ms)
  APNEC 46.3 ± 8.1 33.9 ± 6.4 38.9 ± 8.3 1.70 0.91

  Control 46.8 ± 8.1 45.3 ± 7.6 46.8 ± 7.4 0.20 0.01

RFD (N·s−1)
  APNEC 578.2 ± 127.2 658.7 ± 143.5 637.2 ± 145.7 0.59 0.43

  Control 605.0 ± 114.8 587.2 ± 128.5 610.5 ± 134.0 0.10 0.01

PF (N)
  APNEC 182.4 ± 55.1 211.9 ± 62.8 207.1 ± 66.3 0.50 0.40

  Control 171.8 ± 42.8 171.7 ± 44.9 172.8 ± 43.7 0.01 0.00
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interactive effects associated with surgery and post-
TKA clinical care. Similarly, experimental controls were 
focused on an extended period of longitudinal evaluation 
of baseline performance capabilities of the leg undergo-
ing surgery and differential inter-group responses, rather 
than on those of the contralateral leg.

Other limitations for this explorative trial included 
that group allocation was not concealed from patients 
or from those overseeing the patients’ testing adminis-
tration and conditioning. As such, the potential for bias 
within the findings could not be eliminated. Similarly, 

physical activity behaviors associated with travel to and 
from the APNEC’s venue for its delivery and assessments 
was not monitored directly and varied physical activ-
ity might have elicited heterogeneous carry-over effects 
amongst the patients’ responses to APNEC. A further 
limitation reflected a lack of patients’ self-perceived pain 
assessments within the APNEC protocol, even though 
the latter had been monitored in general by means of 
questionnaire, but not reported here. Furthermore, 
while the patient’s compliance with the APNEC’s train-
ing prescription was monitored directly, this approach 

Fig. 4  Group mean performance scores (± SD; APNEC, n = 9; Control, n = 12) assessed in the ipsilateral leg for muscle activation capacity 
(electromechanical delay [EMD]; rate of force development [RFD]) and knee extension strength (peak force [PF]) using dynamometry and 
concomitant surface electromyography (m. rectus femoris[RF] and m. vastus lateralis[VL])
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that may not be facilitated in all environments, such as 
within self-managed care. Nevertheless, future stud-
ies will aim to identify optimised APNEC dosing and 
approaches for its scalability and delivery amongst varied 
care environments.

This study’s findings were derived from a modestly-
sized sample of non-obese (BMI < 30  kg·m−2) patients 
(n = 21), which might preclude generalisation. Observed 
Type II error rates were modest (≤ 0.12) and appeared to 
offer suitable experimental design sensitivity and statisti-
cal power amongst the selected indices of neuromuscular 
performance.

Conclusion
This exploration study of prehabilitative neuromuscular 
exercise-conditioning in patients electing unilateral TKA 
suggested that the APNEC protocol may be efficacious 
for improving neuromuscular performance capacities (d, 
0.54—0.66; 13.6—26.0%). Gains prevailed the cessation of 
APNEC. 
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