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Abstract 

Background:  Osteoporosis is associated with a decrease of bone mineralized component as well as a increase of 
bone marrow fat. At present, there are few studies using radiomics nomogram based fat-water material decomposi-
tion (MD) images of dual-energy spectral CT as an evaluation method of abnormally low Bone Mineral Density (BMD). 
This study aims to establish and validate a radiomics nomogram based the fat-water imaging of dual-energy spectral 
CT in diagnosing low BMD.

Methods:  Ninety-five patients who underwent dual-energy spectral CT included T11-L2 and dual x-ray absorptiom-
etry (DXA) were collected. The patients were divided into two groups according to T-score, normal BMD(T ≥ -1) and 
abnormally low BMD (T < -1). Radiomic features were selected from fat-water imaging of the dual-energy spectral CT. 
Radscore was calculated by summing the selected features weighted by their coefficients. A nomogram combining 
the radiomics signature and significant clinical variables was built. The ROC curve was performed to evaluate the per-
formance of the model. Finally, we used decision curve analysis (DCA) to evaluate the clinical usefulness of the model.

Results:  Five radiomic features based on fat-water imaging of dual-energy spectral CT were constructed to distin-
guish abnormally low BMD from normal BMD, and its differential performance was high with an area under the curve 
(AUC) of 0.95 (95% CI, 0.89–1.00) in the training cohort and 0.97 (95% CI, 0.91–1.00) in the test cohort. The radiomics 
nomogram showed excellent differential ability with AUC of 0.96 (95%CI, 0.91–1.00) in the training cohort and 0.98 
(95%CI, 0.93–1.00) in the test cohort, which performed better than the radiomics model and clinics model only. The 
DCA showed that the radiomics nomogram had a higher benefit in differentiating abnormally low BMD from normal 
BMD than the clinical model alone.

Conclusion:  The radiomics nomogram incorporated radiomics features and clinical factor based the fat-water imag-
ing of dual-energy spectral CT may serve as an efficient tool to identify abnormally low BMD from normal BMD well.

Keywords:  Osteoporosis, Radiomics, Dual-energy spectral CT

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Osteoporosis is a systemic skeletal disease character-
ized by bone loss leading to an increased risk of fragility 
fractures [1]. With the aging of the population, the inci-
dence of osteoporosis and fragility fractures is increasing. 
If not treated in time, these fractures would lead to high 
morbidity and mortality and carries social and economic 
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burdens [2–4]. Therefore, it is very important to early 
detect osteoporosis, and reduce the incidence of fracture 
complications.

At present, dual x-ray absorptiometry (DXA) is the 
most widely used screening tool for osteoporosis and 
preferred method for bone mineral density (BMD) meas-
urement [5]. According to WHO guidelines [1], a DXA-
derived T- score less than − 1.0 indicates an abnormally 
low BMD, and when the T-score is greater than − 1.0 is 
normal.

The recently introduced dual-energy spectral CT, which 
is based on a single tube fast switching between low-
energy (80 kV) and high-energy (140 kV) data sets, pro-
vides precisely material decomposition (MD) images (e.g. 
fat–water-based and iodine–water-based MD images) 
[6]. The dual-energy spectral CT has been used clini-
cally to quantitatively estimate calcium concentration 
in trabecular bone and cortical bone in patients under 
going hemodialysis with secondary hyperparathyroidism 
[7] and to differentiate small hepatic hemangioma from 
small hepatocellular carcinoma [8]. Osteoporosis is asso-
ciated with a decrease of bone mineralized component 
as well as a increase of bone marrow fat, which is caused 
by a shift of differentiation of mesenchymal stem cells 
to adipocytes [9]. Fat-water-based MD images of dual-
energy spectral CT can reflect the changes of fat content 
in the process of osteoporosis. However, there are few 
studies using fat-water MD images of dual-energy spec-
tral CT as an evaluation method of osteoporosis.

The term radiomics has attracted increased attention 
in recent years, and it is a promising technique using 
computerized quantitative imaging analysis to extract an 
enormous quantity of image-related features, followed by 
subsequent data analysis for decision support [10–13]. 
Radiomics nomogram combined the fat-water imag-
ing of dual-energy spectral CT can provide a new and 
effective method for clinical and radiologists to quantify 
bone marrow fat in the process of osteoporosis. There-
fore, the purpose of this study is to establish and validate 
a radiomics-clinical model (radiomics nomogram) that 
combined the fat-water imaging of dual-energy spectral 
CT based radiomics signature and clinical risk factors for 
discriminating abnormally low BMD from normal BMD.

Materials and methods
Patients
This retrospective study of opportunistic screening was 
approved by the institutional review board, and the 
requirement to obtain informed consent was waved. The 
primary cohort of this study was identified by searching 
the institutional picture archiving and communication 
systems (PACS) database for medical records from Janu-
ary 2020 to August 2020 to identify patients with DXA 

as well as dual-energy spectral CT examination for other 
indications in routine practice. For inclusion, patients 
had to have had thoracic or abdominal dual-energy spec-
tral CT that showed T11-L2 were included in the study, 
or both, as well as DXA of the hips and lumbar spine. 
The mean time interval between the two examinations 
was less than 1 week. Exclusion criteria included image 
artifacts obscuring the spine, or any hardware or metal 
associated with the spine, as well as patients with spinal 
fractures, spinal tumors, endocrine diseases, rheumatic 
diseases, and infectious spondylitis, because these dis-
eases are known to cause osteoporosis. Baseline clinic 
data, including the values of T11-L2 of fat-water images, 
age, gender, body mass index (BMI) derived from medi-
cal records were also recorded. The final cohort con-
sisted of 95 patients (33 men, 62 women; mean age, 
61.69 ± 9.30 years).

DXA examination and diagnostic criteria of osteoporosis
DXA of the lumbar spine and proximal femora was per-
formed for BMD assessment by using standard tech-
niques according to manufacturer and WHO guidelines 
Hologicdiscovery dual-energy X-ray bone densitometer 
(Hologic Inc., Bedford, MA) [1]. According to WHO 
guidelines, a DXA-derived T-score less than − 1.0 indi-
cates an abnormally low BMD, which is further catego-
rized into osteopenia (T-score between − 1.0 and − 2.5) 
and osteoporosis (T-score of − 2.5 or below), and when 
the T-score is greater than − 1.0 is normal. In our study, 
the patients were divided into two groups according 
to T-score, normal BMD(T ≥ -1) and abnormally low 
BMD(T<-1).

Dual‑energy spectral CT examination
All patients underwent routine thoracic or abdominal 
dual-energy spectral CT with a scanner (Revolution CT; 
GE Healthcare, Wauwatosa, Wis) and a single-tube, fast 
dual-tube potential (80 kVp and 140 kVp) switching scan 
technique. Imaging parameters were as follows: tube 
voltage = 80/140KV; pitch = 0.984; rotation time = 0.8 s/r; 
slice thickness = 1.25 mm, slice interval = 5 mm, adaptive 
statistical iterative reconstruction V (Asir-V) = 40%.

Image segmentation and feature extraction
The material decomposition images with fat-water as 
base materials obtained from the dual-energy spectral 
CT imaging were transferred to ITK-SNAP software 
(Version 3.6.0, www.​itksn​ap.​org) for segmentation. An 
ovoid region of interest (ROI) of T11-L2 was manually 
drawn on the sagittal images with the same size, typi-
cally selecting a representative trabecular level centered 
between this inferior and the superior endplate (Fig. 1). 
Care was taken to avoid the posterior venous plexus, 

http://www.itksnap.org
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focal heterogeneity, cortical bone or any imaging-related 
artifacts. To assess the segmentation availability, the 
image segmentation was examined by another radiologist 
with 10 years of experience in CT interpretation. If the 
ROI was questioned, it would be re-segmented after the 
two agree.

AK software (AnalysisKit, version 3.2.0, GE 
Healthcare, China) backend with pyradiomics (ver-
sion 3.0.1, https://​pyrad​iomics.​readt​hedocs.​io/​en/​
latest/) was used to extract the radiomics features. 
Before feature extraction, the images were preproc-
essed with 3 steps, resampling the voxel size into 

1*1*1 mm^3, discretizing the gray values using 25 
bin width, normalizing the gray value using μ ± 3σ 
method. After that, 6 classes of features were 
extracted, first-order features, gray level co-occur-
rence matrix features, gray level run length matrix 
features, gray level size zone matrix features, neigh-
boring gray tone difference matrix features and gray 
level dependence matrix features, based on the orig-
inal image, wavelet-transformed images and Lapla-
cian of gaussian filtered images with sigma 2, 3. 
Totally, 828 features were extracted and used in the 
following analysis.

Data preprocessing
The dataset was randomly assigned in a 7:3 ratio to either 
the training cohort or test cohort. All cases in the train-
ing cohort were used to train the predictive model, while 
cases in the test cohorts were used to independently eval-
uate the model’s performance.

Before analyses, variables with zero variance were 
excluded from analyses. Then, the missing values and 
outlier values were replaced by the median. Finally, the 
data were standardized using z-score method.

Development of radiomics signature
We used two feature selection methods, the minimum-
Redundancy Maximum-Relevancy (mRMR) and the least 
absolute shrinkage and selection operator (LASSO) to 
select the feature. At first, mRMR was performed to elim-
inate the redundant and irrelevant features, 30 features 
were retained. Then LASSO was conducted to choose the 
optimized subset of features to construct the final model. 
Radscore was calculated by summing the selected fea-
tures weighted by their coefficients.

Fig. 1  An ovoid region of interest (ROI) of T11-L2 was manually 
drawn on the sagittal images with the same size, typically selecting a 
representative trabecular level centered between this inferior and the 
superior endplate

Table 1  Characteristics of patients in the training and test cohorts

*P value < 0.05, two-sample t-test for continues variables; χ2 test and Fisher’s exact test for categorized variables. BMD Bone mineral density, BMI Body mass index, SD 
Standard deviation

Characteristics Training cohort(n = 67) Test cohort(n = 28)

Normal
BMD

Abnormally low BMD P-values Normal
BMD

Abnormally low BMD P-values

Number 21 46 9 19

Gender(%)

  Male 10 (47.6) 12 (26.1) 4 (44.4) 7 (36.8)

  Female 11 (52.4) 34 (73.9) 0.144 5 (55.6) 12 (63.2) 1.000

Age, y,
mean ± SD

61.8 ± 9.4 61.6 ± 9.0 0.933 57.9 ± 10.8 63.6 ± 9.2 0.1479

BMI, mean ± SD 25.8 ± 2.3 23.9 ± 3.5 0.021* 26 ± 2.9 24.4 ± 2.6 0.1467

Values of fat-water 
imaging, mean ± SD

− 3906.4 ± 763.8 − 2590.3 ± 718.4 0.000* − 4491.3 ± 1184.3 − 2581.2 ± 603.3 0.000*

https://pyradiomics.readthedocs.io/en/latest/
https://pyradiomics.readthedocs.io/en/latest/
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Development of radiomics nomogram and assessment 
the performance of different models
The clinical variables included the values of T11-L2 of 
fat-water images, age, gender and BMI. We used the uni-
variate logistic regression analyses to filter these variables 
and select the significant risk factors with P < 0.05, sub-
sequently, a backward step-wised multivariable logistic 
regression analysis with Akaike An Information (AIC) as 
criterion was performed to construct the clinical model. 
Meanwhile, a radiomics nomogram combining the final 
radiomics signature and independent clinical risk factors 

were built. Here, we used DeLong’s test to compare 
whether the ROC curves were different between nomo-
gram and clinical model. The calibration of the nomo-
gram was evaluated with a calibration curve analysis 
and using LOESS method. The goodness of fit was tested 
using the Hosmer-Lemeshow test. Finally, we used deci-
sion curve to evaluate the clinical utility of the model.

Statistical analysis
All statistical analyses for the present study were per-
formed with R (version 4.0.2, www.r-​proje​ct.​org). The 
mRMR and LASSO were used to select the features 
and were performed using ‘mRMRe’ and ‘glmnet’ pack-
ages, respectively. The LASSO includes choosing the 
regular parameter λ, determining the number of the 
feature. Wilcoxon test was applied to compared the rad-
scores from abnormal low BMD group and normal BMD 
group on training cohort and test cohort respectively. 
Receiver operating characteristic (ROC) curve analysis 
was performed to evaluate the performance of the model, 
and area under curve (AUC) were calculated. Besides, 
DeLong’s test was used to compare whether the ROC 
curves were different between nomogram and clinical 
model, we also used net reclassification index (NRI) and 
integrated discrimination improvement (IDI) to compare 
their accuracy and discrimination ability. A two-tailed 
p-value < 0.05 indicated statistical significance.

Results
Patients characteristics
A total of 95 patients were included in our study. There 
were 67 and 28 patients in the training and test cohort 
respectively. The detailed patient characteristics in the 
two cohorts are displayed in Table 1. In each cohort, there 
was no significant differences in gender and age, but dif-
ferences of the values of fat-water imaging sets were both 
detected in the two cohorts between the normal BMD 
patents and abnormally low BMD patents(P = 0.000). 
BMI was not statistically significant in the test cohort, 
however, it was statistically significant in the training 
cohort.

Feature selection
Eight hundred twenty-eight features were finally 
extracted from one image. Due to none of features was 
0 variance, 0 feature was removed. So that, 828 features 
were all imported into mRMR feature selection, which 
was performed to eliminate the redundant and irrelevant 
features, 30 features were retained. Then LASSO was 
conducted to choose the optimized subset of features 
to construct the final model (Fig.  2), the specific steps 

Fig. 2  Selection of the hyperparameter (λ) in the LASSO model 
via 10-fold cross validation based on minimum criteria of binomial 
deviance. Binomial deviance was plotted as a function of log (λ). The 
optimal λ value of 0.073 was selected. The dotted vertical line was 
drawn at the value selected using 10-fold cross-validation, in which 
the selected λ resulted in 5 non-zero coefficients. LASSO:the least 
absolute shrinkage and selection operator

http://www.r-project.org
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included: using 10-fold cross validation to find the opti-
mized hyperparameter λ with minimum binomial devi-
ance as criteria, and then determining the optimized 
feature subset according to the λ. Finally, 25 features were 
removed and five features were selected as the most pre-
dictive subset of feature, which and their corresponding 
coefficients were shown in Fig. 3.

Radiomics signature construction
Radscore was calculated by summing the selected five 
features weighted by their coefficients. The final formula 
of radscore is: Radscore = − 0.136*wavelet_LLH_glszm_
ZonePercentage-0.756*original_firstorder_90Percentile-
0.185*wavelet_HLH_firstorder_Energy+ 0.641*wavelet_
HLH_firstorder_Minimum-0.109*original_glszm_Siz-
eZoneNonUniformity + 1.022.

And we compared the radscores from normal BMD 
and abnormally low BMD of the fat-water imaging on 
training and test cohort respectively. Boxplots show the 
dual-energy spectral CT radiomics signatures in abnor-
mally low BMD patients were much higher than the 
normal BMD group in both the training and test cohort 
(Fig.  4). The AUC values of the radiomics model in the 
two cohorts were 0.95 (95% Confidence interval [CI]: 
0.89–1.00, P<0.001), 0.97 (95% CI: 0.91–1.00, P<0.001) 
respectively, indicating that radiomics features could 
effectively distinguish abnormally low BMD from normal 
BMD.

Nomogram build
By incorporating the values of fat-water imag-
ing and radscores, a radiomics nomogram was 
developed in the training cohort (Fig.  5) using the 
following formula: Nomoscore = (Intercept)*5.693 + Fat-
Water*0.0019 + Radscore*1.855.

The ROC of radiomics nomogram and clinical factors 
model are exhibited in Fig.  6. Based on the radiomics 
nomogram and clinics model, the AUC values for train-
ing cohort were 0.96(95% CI: 0.91–1.00), 0.89(95% CI: 
0.81–0.97), respectively; and the AUC values for test 
cohort were 0.98(95% CI: 0.93–1.00), 0.95(95% CI: 0.87–
1.00), respectively. The diagnostic performance of every 
model is demonstrated in Table  2. The nomogram had 
better accuracy and discrimination abilities than clinical 
model in both training and test cohort (Training group: 
nomogram vs clinical model, NRI = 0.2433, p = 0.0026, 
IDI = 0.1946, p  = 0.00302; Test group: nomogram vs 
clinical model, NRI = 0.2105, p  = 0.024, IDI = 0.1684, 
p = 0.028).

The calibration curve of the radiomics nomogram dem-
onstrated good agreement between the predicted and 
expected probabilities for normal BMD and abnormally 
low BMD in training cohort, and P values of Hosmer-
Lemeshow test were larger than 0.05 in both training 
and test cohorts (Fig. 7). Finally, we used decision curve 
to evaluate the clinical usefulness of the model (Fig.  8). 
It showed that the radiomics nomogram had a higher 

Fig. 3  The final 5 features extracted from fat-water imaging of dual-energy spectral CT and their coefficients after LASSO. LASSO:the least absolute 
shrinkage and selection operator
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Fig. 4  Boxplots show the dual-energy spectral CT radiomics signatures in abnormal BMD patients were much higher than the normal BMD group 
in both the training (left) and test cohort (right). 0 means normal BMD group, 1 means abnormal BMD group

Fig. 5  The radiomics nomogram, combining the values of fat-water imaging and radscores developed in the training cohort
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benefit in differentiating abnormally low BMD from nor-
mal BMD than the clinical factor model.

Discussion
In the present study, we developed and validated a radi-
omics nomogram that incorporated one clinical factor 
and five radiomics features derived from fat-water imag-
ing based dual-energy spectral CT, which can help clini-
cian and radiologists to identify abnormally low BMD 
from normal BMD well. To the best of our knowledge, 
this is few radiomics model developed to diagnose oste-
oporosis combined with fat-water imaging based dual-
energy spectral CT.

Osteoporosis is characterized by bone loss and 
increased susceptibility to fragility fractures [14]. Oste-
oporosis are associated with lower osteogenesis and 
greater adipogenesis, and the both arise from a common 
mesenchymal stem cell within bone marrow [15, 16]. The 
trabecular bone is the most metabolically active part in 
vertebrae [17]. Xiaojuan Li et  al. found that the average 
fat content was significantly elevated of vertebral body 
in patients with osteoporosis/osteopenia compared with 
controls in 51 postmenopausal females by using magnetic 
resonance spectroscopy (MRS) [18]. Because DXA meas-
ures areal BMD, it can not differentiate between cortical 
and trabecular bone [19, 20], it doesn’t reflect fat content 
exactly as well.

Dual-energy CT measurements were used to derive 
basis material composition representation of the con-
stituents of a measured volume. In a study by Bredella 
MA et  al. [16], the L2 vertebra was scanned with dual-
energy CT by using a dual source and multidetectors row 
CT scanner. They found excellent agreement between 
dual-energy CT and 1H MRS in the assessment of mar-
row adipose tissue (MAT) content of L2 vertebra. Dif-
ferent from their study, the dual-energy CT used in our 
study was based on a single tube fast switching between 
low-energy and high-energy within a rotation, which was 
called dual-energy spectral CT. In our study, the values 
from dual-energy spectral CT fat-water MD imaging of 
T11-L2 were measured, and there were significant dif-
ferences between normal BMD and abnormal low BMD. 

Fig. 6  Comparison of ROC curves among the clinical, radiomic and radiomics nomogram model for the prediction of BMD normal or abnormal in 
the training (left) and test (right) cohort

Table 2  Diagnostic efficiency of different models in the training 
and test cohorts

AUC​ Area under the curve, CI Confidence intervals

Model AUC(95%CI)

Radiomics

  Training 0.95 (0.89–1.00)

  Test 0.97 (0.91–1.00)

Clinics

  Training 0.89 (0.81–0.97)

  Test 0.95 (0.87–1.00)

Nomogram

  Training 0.96 (0.91–1.00)

  Test 0.98 (0.93–1.00)
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This result showed that the values of fat-water MD can 
reflect the change of marrow adipose tissue of osteopo-
rosis. Although the parameters extracted from ordinary 
CT images can also reflect osteoporosis, it can’t quantify 
bone mineralized component and bone marrow fat sepa-
rately. To the best of our knowledge, there are few studies 
using fat-water MD images of dual-energy spectral CT as 
an evaluation method of osteoporosis.

Radiomics is a promising technique using comput-
erized quantitative imaging analysis to extract a large 
number of image-related features to assist in diagnos-
ing diseases, which has attracted increasing attention 

in recent years [21, 22]. In the present study, LASSO 
method was adopted to reduce the regression coef-
ficient to construct the radiomics signature, which 
has already been used for the prediction of bone 
metastasis in prostate cancer [23] and colorectal can-
cer [24] patients. Finally, radscore was calculated by 
summing the selected five features weighted by their 
coefficients. The radiomics feature model based on 
fat-water imaging of dual-energy spectral CT showed 
sufficient discrimination in the training cohort 
(AUC = 0.95) and good predictive performance in 
the test cohort (AUC = 0.97). However, the radiomics 

Fig. 7  The calibration curve of the radiomics nomogram demonstrated good agreement between the predicted and expected probabilities for 
normal BMD and abnormally low BMD in both training (left) and test (right) cohort

Fig. 8  Decision curve analysis (DCA) for the radiomics nomogram. The DCA indicate that the application of radiomics nomogram to predict normal 
or abnomal BMD adds more benefit than clinical model. The red line and blue line represent the net benefit of the radiomics nomogram and the 
clinical model, respectively. The green line indicates the hypothesis that all patients had abnormal BMD. The black line represents the hypothesis 
that no patients had abnormal BMD
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model to predict abnormal BMD was not unique, for 
it was data-driven method, which might affect by the 
dataset and training method.

In the present study, five radiomics features consisted 
of the optimal feature subset. In these 5 features, 3 were 
the firstorder features and 2 were GLSZM features. And 
original_firstorder_90Percentile and wavelet_HLH_
firstorder_Minimum contribute more to the radiomics 
model for they have larger coefficients. That meant that 
the grey value distribution within the ROI between the 
normal and low BMD were different. Besides, GLSZM 
zone percentage and Size Zone Nonuniformity also had 
contributions to radiomics model, and their coefficients 
were negative, which meant that the normal BMD had 
fine texture and more homogeneity. Gender and age 
were not statistically significant in the training and 
test cohort. Furthermore, these findings suggested that 
there were no differences of gender and age between 
abnormal and normal BMD. However, BMI was statisti-
cally significant in the test cohort only.

In addition to radiomics and clinics analysis, we also 
developed and evaluated the radiomics nomogram. 
The AUC value of radiomics nomogram achieved more 
satisfactory than radiomics and clinics model both in 
training and test cohort. The findings suggested that the 
radiomics nomogram based on the combined model 
had a higher benefit in differentiating abnormally low 
BMD from normal BMD. Moreover, DCA showed that 
employing the nomogram could obtain more net ben-
efits than the clinical model alone. However, DCA is 
prevalence dependent, the result of DCA was only for 
reference. Thus, the use of the developed nomogram 
may be a promising method in assisting radiologists 
in differentiating abnormally low BMD from normal 
BMD. So as to help clinical early detection of osteopo-
rosis and prevent the progress of osteoporosis.

The limitations of our study should be acknowl-
edged. Firstly, it was a retrospective study performed 
in a single institution. Secondly, the number of patients 
enrolled in our study was relatively small. Additionally, 
there were a few clinics features included in present 
study, only age, gender, BMI and the values of fat-water 
imaging. In the future, the limitations need to be fur-
ther improved in the following investigations.

Conclusions
In conclusion, the present study developed a radiomics 
nomogram that incorporated clinical factor and radiom-
ics features derived from fat-water imaging based dual-
energy spectral CT, which may serve as an efficient tool 
to help clinician and radiologists to identify abnormally 
low BMD from normal BMD well.
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