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Abstract 

Background:  Different methods of acetabular reconstruction with total hip arthroplasty (THA) for Crowe II and III of 
adult developmental dysplasia of the hip (DDH) acetabular bone defect have been implemented clinically. However, 
the biomechanical effect of different augmented materials for acetabular reconstruction in THA on shell stability has 
never been discussed.

Methods:  In the present study, autologous bone graft (BG)and metal (Ti6Al4V) augment (MA) were simulated with 
several acetabular bone defect models of DDH in THA. The contact pressure and micromotion between the shell and 
host bone were measured for evaluating the shell stability using a finite element method.

Results:  The peak contact stress between shell and host bone was higher in the MA situation (12.45 vs 8.71 MPa). 
And the load transfer path was different, for BG models, the high local contact stresses were found at the junction of 
bone graft and host bone while for MA models the concentrated contact stresses were at the surface of MA. The peak 
relative micromotion between shell and host bone was higher in the MA situation (12.61 vs 11.13 µm). However, the 
peak micromotion decreased in the contact interface of MA and cup compared to the BG models.

Conclusions:  The higher micromotion was found in MA models, however, enough for bone ingrowth, and direct 
stronger fixation was achieved in the MA-cup interface. Thus, we recommended the MA can be used as an option, 
even for Crowe III, however, the decision should be made from clinical follow-up results.
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Introduction
Acetabular reconstruction with total hip arthroplasty 
(THA) for Crowe II and III of adult developmental dys-
plasia of the hip (DDH) is a challenge [1]. Because you 
have to premeditate the position of the arthroplasty 

cup, compared to Crowe I and IV, which the position 
of arthroplasty cup is the original true acetabular posi-
tion in most cases, although acetabular reconstruction 
with THA for Crowe IV is much more difficult [2], the 
degree of acetabular bone defect [3], and the techniques 
of reconstruction [4, 5], In this study, augmentations for 
acetabular reconstruction of DDH with THA by restor-
ing the original center of femoral head rotation in the sit-
uation of Crowe II and III bone defect were discussed [6].
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Acetabular bone defect in DDH can be regarded as an 
inherent existence [7]. To what extent acetabular cup 
uncoverage affect the stability after THA matters. It has 
been suggested this uncoverage should not exceed 30% of 
the cup generally [8]. For obtain adequate bone coverage 
in the bone defect more than 30%, the use of a small cup 
size with medialization or high hip center positioning of 
cup for stable fixation of the acetabular component is an 
option [9]. However, the hip center of rotation (COR) was 
changed [10]. To restore the HCOR and establishing nor-
mal biomechanics of the hip, autologous bone graft was a 
traditional material for roof acetabular reconstruction, and 
the long-term outcomes was obtained [11], however, the 
complications such as the resorption of bone graft resulted 
in instability of acetabular component [12]. Recently, the 
metal augments were developed for acetabular reconstruc-
tion in primary and revision THA [13], and the short-term 
results was promising [14, 15]. Although the biomechani-
cal behavior of different augment materials (Ti6Al4V vs 
Trabecular Metal) has been compared in stress level using 
the finite element method [16]. However, the biomechani-
cal comparison of bone graft and metal augments on cup 
stability of the interface between acetabular component 
and host bone is missing, more information is needed. We 
hypothesized that the metal augment could provide a sta-
ble cup stability as equally as the bone graft provided.

The purpose of the study was to establish several ace-
tabular bone defect models of DDH reconstructed with 
Ti6Al4V augment and autologous bone graft in THA and 
compare the influence of the two materials on biome-
chanical behavior (cup stability) of the interface between 
acetabular component and host bone using a finite ele-
ment method.

Materials and methods
Construction of acetabular bone defect models of DDH
A healthy volunteer (Sex: male, age: 27  years, Height: 
164 cm, Body weight: 66 kg) without any musculoskeletal 
disease or history of hip joint operations was recruited. 
quantitative computed tomography (QCT) was scanned 
in combination with a calibration phantom (B-MAS200, 
Kyoto-kagaku, Kyoto, Japan) for calibrating the bone 
mineral density [17]. The resolution of each CT image 
was 512 by 512 pixels with a slice thickness of 1.0  mm, 
and the pixel size was 0.782 mm/pixel under 120 kV and 
102.50 mA conditions. We used the commercial software 
MIMICS (v 22, Materialise, Belgium) to reconstruct the 
intact right iliac and femoral bone, and methods can be 
found in our previous study [18].

According to Crowe’s classification for adult devel-
opmental dysplasia of the hip (DDH) [19], there are 
two methods to evaluate the degree of DDH, one is 

subluxation of femoral head that can be measured by 
the elevation of femoral head center. Another one is the 
ratio of the distance of proximal dislocation to the pel-
vic height [20]. The acetabular bone defect models of 
Crowe II and III in THA were made by elevating the 
femoral head center or center of rotation of femoral head 
(COR) [21] from original COR (black solid line) to 55% 
(Green dotted line), 65% (purple dotted line), (Crowe II); 
75% (yellow dotted line), 85% (red dotted line), (Crowe 
III) of the femoral head radius, which can be regarded 
as the COR dislocation percentage (Fig. 1a). When COR 
reached the top range of femoral head, the COR disloca-
tion percentage was recorded as 100% [22].

Reconstruction of acetabular bone defect models of DDH 
in THA
The acetabular bone defect models were simulated with 
Boolen operation using a CAD system (SolidWorks 2016, 
SolidWorks Corp, USA). The lost part of acetabular by 
Boolen operation was preserved as the metal augment 
(MA) (Ti6Al4V) and structural autologous bone graft 
(BG) geometrical shape (Fig.  1b) [23]. Two screws with 
the diameter of 6.5 mm were inserted to fix the MA or 
BG [16]. Acetabular cup (shell, linear) and femoral (head) 
prostheses were made in SolidWorks according to the 
size of the subject’s acetabulum and femoral head. The 
acetabular cup was a 52  mm PINNACLE cup without 
porous coating (Depuy, America) [24]. Cup inclination 
of 40 degrees and anteversion of 20 degrees were preset 
using anterior pelvic plane (APP) [25]. The ceramic liner 
(Depuy, America) with 32  mm femoral ceramic head 
(Link, Germany) were implanted [26]. The solid models 
were assembled for Reconstruction of acetabular bone 
defect models in THA.

Material properties of finite element modeling
Mesh size of the models were approximately 1  mm 
with four-node tetrahedral elements, which has been 
validated from the study [27]. In this study, each ele-
ment of iliac bone was assigned with isotropic hetero-
geneous Young’s modulus based on QCT data form 
our previous study [18] (Fig.  1c). the parameters used 
for converting Hounsfield Units (HU) to radiographic 
CT density ( ρQCT (g/cm3) (Eq.  (1)) were calculated 
from the B-MAS200 phantom [17], and from ρQCT  to 
Ash density ( ρash(g/cm3) (Eq.  (2)) [28], then then the 
apparent density that was calculated from the ash den-
sity with a ratio of 0.6 [29] was converted to the elastic 
modulus (Eq. (3)) [30].

(1)ρQCT

(

g/cm3
)

= 0.9863HU − 2.0804
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Hip protheses (shell, linear, and head), two augmen-
tal materials and the screws were assigned with iso-
tropic homogenneous elastic properties from literature 
(Table 1) [16, 22].

Loading and boundary conditions
Hip contact force of single-legged stance without taking 
account of muscles [24] was performed at the femoral 
head center (Fig. 1d). The pubic symphysis and sacroiliac 

(2)ρash(g/cm
3) = 0.877× ρQCT + 0.078

(3)E = 6850ρ1.49
app

joint were fully fixed to prevent translation and rotation. 
The interface of screws and bone was tied contact, the 
friction coefficient between bone and augment materials 
interface, the bone and cup interface were set as 0.8 [16, 
22], which was press-fit contact pattern without screw 
implantation [31, 32], the head and linear interface was 
0.06 [33]. The FE analysis was performed using a general-
purpose FEA software program (ABAQUS 2019, Das-
sault Systems, Providence, RI).

Evaluation of the simulation
The effect of different materials of augment on stability 
of acetabular cup was evaluated by the contact pressure 
with CPRESS [34, 35] and relative micromotion [21, 24, 
36] in each of the DeLee and Charnley Zones [37]. The 
micromotion of the shell in the surrounding bone stock 
was evaluated using the relative tangential node dis-
placements in the contact surface. The postprocessor 
ABAQUS enables the prediction of tangential displace-
ments (CSLIP) in the two perpendicular directions t1 und 
t2 throughout the whole surface of the implant bed. The 
maximum amounts of micromotion were calculated in 
each finite element n by calculation (Eq. (4)) [39]

(4)RelativeMicromotion(n) =

√

[CSLIP1(t1, n)]
2
+ [CSLIP2(t2, n)]

2

Fig. 1  Finite element modeling of acetabular reconstruction of DDH in THA. a Acetabular bone defect modeling used in the study. b Acetabular 
reconstruction with BG/MA. c Iliac bone was assigned with heterogeneous material properties. d Loading and boundary conditions of finite 
element modeling

Table 1  Material properties of FE models used in the study

Components Materials Elastic modulus 
(MPa)

Poisson’s ratio

Iliac bone
Bone graft

Bone 5.452–17,756.30
150

0.3

Acetabular shell Tantalum 8963 0.31

Metal augment
Screws

Titanium alloy 110,600 0.326

Liner
Femoral head

Ceramics 350,000 0.22
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Results
The peak contact stress between shell and host bone 
(including BG/MA contact area) was higher in the MA 
situation (12.45 vs 8.71  MPa) (Fig.  2a). For BG situa-
tion, the higher contact stress was in zone 3 (8.71 MPa), 
for MA situation, the higher contact stress was in zone 1 
(12.45 MPa) (Fig. 3a). The concentration of contact stress 
for the shell was present in the superoposterior corner of 
zone 1 and inferoanterior corner of zone 3 (Fig. 4), for the 
host bone (including BG/MA contact area), the concen-
tration of contact stress was in the junction area of BG sit-
uation and over the MA surface of MA situation (Fig. 5).

The peak relative micromotion between shell and 
host bone (including BG/MA contact area) was higher 
in the MA situation (12.61 vs 11.13 µm) (Fig. 2b). The 

higher relative micromotion was in zone 3, for either 
BG (11.13  µm) or MA (12.61  µm) situation (Fig.  3b). 
The concentration of relative micromotion for the shell 
was present in the inferoposterior corner of zone 3 for 
either BG or MA situation (Fig. 6).

The relationship of contact stress and micromotion 
was compared between the two reconstructed materials 
(Fig. 7). Three regions (3 × 3 mm squares) inside each of 
the DeLee and Charnley Zones were harvested. Aver-
aged contact pressure and micromotion in each square 
of every model were used to represent the contact pres-
sure and micromotion in that region. From the results 
of linear regression analysis, the contact pressure and 
micromotion had a negative relationship. However, the 
acetabular reconstruction with BG had a poor fitness 

Fig. 2  The peak values of prediction in cup-host bone interface (including cup-BG/MA interface) of different models. a The values of peak contact 
pressure b The values of peak micromotions

Fig. 3  The peak values of prediction in each DeLee and Charnley zone of cup-host bone interface (including cup-BG/MA interface) of different 
models. a The values of peak contact pressure. b The values of peak micromotions
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Fig. 4  Contact stresses distribution of cup surface in different models

Fig. 5  Contact stresses distribution of host bone (including BG/MA) surface in different models
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with the R2 value of 0.001 (Fig. 7A) compared to the MA 
situation with the R2 value of 0.947 (Fig. 7B).

Discussion
The primary purpose of the study was to quantitatively 
compare the influence of two materials (Ti6Al4V aug-
ment and autologous bone graft) for acetabular recon-
struction of DDH on acetabular stability after THA 
using a finite element method. Crown II and III FE 
models were simulated by elevating the femoral head 
center. The mechanical parameters of contact pres-
sure predicted with CPRESS, relative micromotion 
calculated with CSLIP in the interface between shell 

and host bone were utilized to evaluate the acetabular 
stability.

The overall peak contact pressure was slightly higher in 
the MA situation, indicating that acetabular reconstruc-
tion with MA such as Titanium alloy had more contact 
pressure compared to BG such as structural bone graft 
(Fig.  2a). However, the magnitude was higher than the 
normal hip peak contact pressure, even the dysplasia 
hip peak contact pressure in the single-leg standing con-
dition [40–42]. The reason may be the biomechanics of 
hip had been changed by THA compared to the normal 
configuration [43, 44], including the effect of fraction, 
material properties and porosity between the interface of 

Fig. 6  Relative micromotion distribution of cup-host bone interface in different models

Fig. 7  The correlation of contact pressure and micromotion in cup-host bone (including BG/MA) interface of different models. a Acetabular 
reconstruction with BG models. b Acetabular reconstruction with MA models
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implant-bone [45]. It has been confirmed that acetabular 
component with porosity was able to reduce the maxi-
mum contact stress on the bone surface [46].

The peak contact pressure decreased in Zone 2 of the 
DeLee and Charnley Zones either for the BG models or 
the MA models compared with Zone 1, 3 (Fig. 3a), which 
was corresponded with the contact stress distribution 
(Figs.  4  and  5). The interface stress transmission from 
acetabular component to surrounding bone featured in 
the superior dome of Zone 1, and inferioanterior area of 
pubic branch. However, the load transfer path was dif-
ferent in Zone 1, for BG models, the high local contact 
stresses were found at the junction of BG and host bone 
while for MA models the concentrated contact stresses 
were at the surface of MA. The results were similar with 
the biomechanical study [47] about segmental acetabu-
lar rim defects reconstructed with bone graft and rein-
forcement ring, that the peak stress concentration was 
located in the superior-posterior of the acetabulum. This 
suggested that the full fixation postoperatively in the 
superior-posterior dome should be needed for the initial 
stability.

The peak micromotion was slightly higher for the 
MA models (11.92–12.61  µm) (Fig.  2b), lower than the 
relative displacement (20–40  µm) for adequate bone 
ingrowth from reports [48, 49], indicating that acetabular 
reconstruction with MA and BG could provide enough 
initial stability for cup bone ingrowth to guarantee good 
long-term results. The predicted relative micromotion 
between the interface of cup and host bone was consist-
ent with the previous biomechanical study [50]. However, 
the acetabular reconstruction with GB has the disad-
vantage with graft resorption and collapse at the early 
postoperative stage [51–53]. Alternatively, the metal aug-
ments such as Tritanium acetabular wedge augments 
can be used with less micromotion for adequate bone 
ingrowth and stable clinical follow-up results [54, 55].

Compared to BG models in DeLee and Charnley zones, 
the peak micromotion decreased in zone 1 of MA models 
without zone 2 and 3 (Fig. 3b), indicating that acetabular 
reconstruction with MA had an excessive direct fixation 
with the cup (zone1), but the MA and BG materials had 
little influence on the host bone (zone 2, 3). The results 
were corresponded with the interface micromotion dis-
tribution of cup and host bone (Fig. 6), the micromotion 
distribution was similar in zone 2 and 3. High micromo-
tion was located in the inferioposterior corner of ischial 
branch and inferioanterior corner of pubic branch. 
Numerical results indicated that support from superior 
dome, ischial branch and pubic branch was necessary 
to obtain the initial stability in case of DDH or revision 
THA [56, 57].

The micromotion and contact stress had a nega-
tive relationship in bone-implant surface including the 
implant-augment contact area. For MA models, a good 
fitness with R2 = 0.947 was present, because the less 
micromotion was, the more contact stress displaced 
in Square 1 of implant-MA surface. In contrast, for BG 
models, the more micromotion was, the higher contact 
stress in Square 1 of implant-BG surface compared to 
the implant-MA surface, however, the good fitness with 
R2 = 0.964 was present only considering the implant-host 
bone surface (Fig. 7A black solid line). This indicated that 
the MA was able to provide stronger direct fixation with 
cup connection.

Limitations were: (1) The present study was performed 
with a computational simulation method, though it was 
validated [24, 58, 59]. The biomechanical test should be 
added to enrich the results more convincingly [60, 61]. 
(2) There are many factors that influence the second-
ary bone fixation or the cup stability [62], the main fac-
tor was the type of implant surface coated design [48]. 
The cup and MA used in the study was not the porous 
coated design, this may influence the predicted results, 
however, the fraction parameters between contact sur-
face were defined as porous coated situation [16, 22]. (3) 
The acetabular cup fixation method was not the press-
fit technique used in clinical [31], but a press-fit contact 
pattern between cup and bone was decided by simulat-
ing an equivalent friction coefficient from literature [16], 
and the cup-bone relative micromotion may be changed 
[32]. (4) The present study was only focus on acetabular 
component-host bone interface to evaluate the stabil-
ity of cup, the augment-bone interface should be inves-
tigated further to study the biomechanical behavior of 
MA and BG directly. (5) There was only one example of 
the FEA model, which may affect the universality of the 
study, and it was tested mechanically without muscle 
force, just with the contact hip joint force instead, which 
should be considered in the future research. (6) theoreti-
cally, the BG should be priority, because of its synostosis 
with host bone [63], while the MA with host bone was 
an osteointegration [64], however, the biological factors 
was not considered in present study, just the mechanical 
properties addressed.

Conclusions
Acetabular reconstruction of DDH with MA in THA is 
an emerging technique compared to BG with a long his-
tory. From the predicted results, the load transfer path 
was different in the implant-bone interface with the 
two augment materials. And a higher micromotion was 
found in the MA models, however, the micromotions of 
the both in the implant-bone interface were lower than 
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measurements for adequate bone ingrowth, especially, 
MA -implant interface had a less micromotion than the 
GB-implant interface. Thus, we recommended the MA 
can be used as an option, even for Crowe III, however, the 
decision should be made from clinical follow-up results.
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