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Abstract 

Complex intraarticular distal radius fractures (DRFs), commonly managed with volar locking plates, are challenging. 
Combined volar and dorsal plating is frequently applied for treatment, however, biomechanical investigations are 
scant. The aim of this biomechanical study was to investigate volar plating versus double plating in DRFs with differ-
ent degrees of lunate facet comminution.

Thirty artificial radii with simulated AO/OTA 23-C2.1 and C3.1 DRFs, including dorsal defect and lunate facet comminu-
tion, were assigned to 3 groups: Group 1 with two equally-sized lunate facet fragments; Group 2 with small dorsal and 
large volar fragment; Group 3 with three equally-sized fragments. The specimens underwent volar and double locked 
plating and non-destructive ramped loading in 0° neutral position, 40° flexion and 40° extension.

In each tested position, stiffness: (1) did not significantly differ among groups with same fixation method (p ≥ 0.15); (2) 
increased significantly after supplemental dorsal plating in Group 2 and Group 3 (p ≤ 0.02).

Interfragmentary displacements between styloid process and lunate facet in neutral position were below 0.5 mm, 
being not significantly different among groups and plating techniques (p ≥ 0.63).

Following volar plating, angular displacement of the lunate facet to radius shaft was significantly lower in Group 1 
versus both Group 2 and Group 3 (p < 0.01). It decreased significantly after supplemental dorsal plating in Group 2 and 
Group 3 (p < 0.01), but not in Group 1 (p ≥ 0.13), and did not differ significantly among the three groups after double 
plating (p ≥ 0.74).

Comminution of the lunate facet within its dorsal third significantly affected the biomechanical outcomes related to 
complex intraarticular DRFs treated with volar and double locked plates.

Double plating demonstrates superior stability versus volar plating only for lunate facet comminution within its dorsal 
third. In contrast, volar plating could achieve stability comparable with double plating when the dorsal third of the 
lunate facet is not separated by the fracture pattern. Both fixation methods indicated achievable absolute stability 
between the articular fragments.
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Introduction
Volar locking plates have established a standard for reli-
able fixation across the wide spectrum of distal radius 
fractures (DRFs) [1]. Approximately 80% of the intraar-
ticular DRFs can be treated with a single volar plate [2]. 
A subset of DRFs present a typical comminution pattern 
of the lunate facet comprising a volar ulnar corner rim 
fragment, a dorsoulnar fragment, and possibly a free or 
impacted intraarticular fragment (Fig. 1).

This intermediate column fragmentation, observed 
in both osteoporotic and healthy bone, is recognized as 
challenging and prone to complication [3–5]. Non-ana-
tomical reduction of the ulnovolar rim fragment has been 
reported to render the carpal joint susceptible to volar 
subluxation [6]. On the other hand, the dorsoulnar frag-
ment often comprises part of both the radiolunate and 
radioulnar articular surfaces and is crucial in maintaining 
appropriate sagittal radiocarpal alignment and prevent-
ing dorsal collapse [7, 8].

Fixed-angle volar locking plates provide reliable frac-
ture fixation in case of osteoporotic and/or comminuted 

fractures [9]. This is further facilitated by the variable-
angle locking plate technology allowing better target-
ing and purchase in the densest available subchondral 
bone. However, in the case of extremely comminuted and 
unstable fractures, a single volar plate may not provide 
sufficient stability to the dorsal rim, thus necessitating 
supplemental dorsal fixation. Combined volar and dor-
sal plate fixation of intraarticular fractures with commi-
nution of both the metaphysis and the articular surface 
has been clinically studied [10]. However, in the extensive 
body of literature on the biomechanical and clinical per-
formance of volar locking plates, there is a paucity of evi-
dence as to the indications of dorsal plate augmentation 
in the setting of volar plate fixation. Moreover, no stud-
ies have subjected these two fixation methods to a direct 
comparison in order to provide reliable data on the bio-
mechanical behaviour of fracture models with different 
degrees of comminution.

Therefore, the aim of this study was to investigate 
the biomechanical competency of volar-plated DRFs 
compared with double plate fixation in three complex 

Keywords:  Complex intraarticular distal radius fracture, Volar plate, Double plating, Dorsoulnar fragment fixation, 
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Fig. 1  Coronal (top) and axial (bottom) computed tomography scans of clinical cases with intraarticular distal radius fractures with different degree 
of lunate facet comminution comprising two fragments of a comparable size (left), a smaller dorsal and a larger volar fragment (middle), and three 
fragments of a comparable size (right)
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fracture models with different degrees of lunate facet 
comminution.

We tested the hypothesis that a supplemental dorsal 
plate would be needed to preserve the integrity of frac-
tures separating the dorsal third of the lunate facet.

Materials and methods
Specimens and preparation
Thirty artificial right radii (#7001, cortical bone density 
0.79 g/cm3, cancellous bone density 0.17 g/cm3, SYN-
BONE AG, Zizers, Switzerland) were assigned to three 
treatment groups with ten specimens each, simulating 
plated complex three- or four-part intraarticular AO/
OTA 23-C2.1 or C3.1 fractures with different degrees of 
lunate facet comminution.

The fracture models were created as follows. First, a 
15° dorsal wedge-shaped osteotomy gap, located 10 mm 
proximal to the articular surface to mimic comminu-
tion of the dorsal distal radius aspect, was created in all 
specimens. Second, an intraarticular fracture line was 
set through the Lister’s tubercle in the sagittal plane. The 
styloid process of the radius was then separated from the 
shaft and the remaining articular fragments as a single 
piece. Third, the lunate facet was split by coronal osteoto-
mies, so that it consisted of two equally-sized fragments 
in Group 1, a small dorsal and large volar fragment at a 
ratio of 1:2 in Group 2, and three equally sized fragments 
in Group 3 (Fig. 2).

Following fracture reduction, all radii were first double-
plated using a 2.4 mm Variable Angle LCP Two-Column 
Volar Distal Radius Plate (DePuy Synthes, Zuchwil, Swit-
zerland) and a 2.4 mm Variable Angle LCP Dorsal Distal 

Radius Plate (DePuy Synthes, Zuchwil, Switzerland) – 
made of Ti-6Al-7Nb alloy – according to the manufac-
turer’s recommendations (Fig. 3).

All locking screws were inserted according to the cor-
responding surgical guidelines, applying widely accepted 
techniques to avoid dorsal compartment penetration of 
the volar screws [11–13]. The insertion of each screw was 
performed at 90° with respect to its hole axes, except for 
the middle screw in the proximal volar plate row, which 
was directed to the lunate facet fragment with an angula-
tion of 15°. The diaphyseal screws of the volar plate were 
bicortical, whereas its articular screws were monocorti-
cal with lengths in the range 18–22 mm (depending on 
the specimen’s anatomy) and inserted subchondrally at a 
distance of 2 mm from the far cortex. All screws of the 
dorsal plate were monocortical with a length of 22 mm. 
The specimens were cut proximally to a total length of 
170 mm. Two Kirschner (K-) wires were inserted into the 
radial shaft and one of the lunate fragments, oriented in 
the sagittal plane for radiological evaluation in mediolat-
eral (ML) view. Additionally, metal balls were inserted in 
the volar and dorsal fragments of the lunate facet, and in 
the styloid process to assess their interfragmentary dis-
placements via radiological evaluation in anteroposterior 
(AP) view.

Biomechanical testing
Biomechanical testing was performed on a servo-
hydraulic material testing system (Mini Bionix II 858, 
MTS Systems Corp., Eden Prairie, MN, USA) equipped 
with a 4 kN loadcell. Each specimen was non-destruc-
tively loaded along the machine axis using three setups 

Fig. 2  Schematic illustration of the distal radius and ulna in axial view (left), together with the group assignment according to the intraarticular 
fracture patterns at the lunate facet (right) with two equally-sized fragments (Group 1, top right), with a small dorsal and a large volar fragment at a 
ratio of 1:2 (Group 2, middle right), and with three equally-sized fragments (Group 3, bottom right)
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featuring neutral position along the shaft axis, flexion 
or extension of the radius (Fig.  4). For this purpose, 
the proximal end of each specimen was coupled to the 
machine actuator via a custom-made fixation with a 
set angle of 90° for neutral position and 40° for flexion 
and extension. The distal load transfer to the articular 
surfaces was achieved via two custom-molded polym-
ethylmethacrylate (PMMA, SCS-Beracryl D28, Suter 
Kunststoffe AG, Fraubrunnen, Switzerland) supports, 
one supporting the scaphoid facet, and the other the 
lunate facet. Three different separate sets of supports 
were negatively casted for testing in neutral posi-
tion, flexion and extension. Both supports rested on a 
metal sphere of 8 mm diameter, enabling all rotational 
degrees of freedom. The spheres were positioned asym-
metrically on a custom-made seesaw to achieve a pre-
defined load distribution of 60% and 40% transmitted to 
the scaphoid and lunate facets, respectively [14, 15]. In 
addition, the sphere under the scaphoid facet was sup-
ported on a miniature linear guide for free mediolat-
eral movement. Finally, the seesaw was mounted on the 
machine base with an XY table to alleviate shear forces.

The protocol for all tests consisted of a non-destructive 
ramped loading from 10 N to 100 N at a rate of 10 N/sec. 
The linear elastic behavior of the plated specimens under 
these loading conditions was confirmed in pilot tests. 
The upper limit of 100 N was defined based on previous 
studies [16–19]. From a clinical perspective, it was within 
the expected range of physiological loading for light 
wrist motion. The loadcell operated with a measurement 
uncertainty of 0.4% within a load range 0–250 N and was 
therefore suitable for the applied loads.

Following the biomechanical testing of the double-
plated specimens, their dorsal plate was removed and all 
tests were repeated using a single volar plate fixation.

Data acquisition and analysis
Force and crosshead displacement machine data were 
acquired at 128 Hz. Based on these, construct stiffness 
of each specimen was calculated from the linear elas-
tic region of the force-displacement curve within a load 
range 40–80 N for each loading direction and type of 
plate fixation. Moreover, all tests were accompanied by 
ML and AP radiographs taken at 10 N and 100 N force 

Fig. 3  Exemplified specimens from Group 2 after volar plating using a 2.4 mm Variable Angle LCP Two-Column Volar Distal Radius Plate (DePuy 
Synthes, Zuchwil, Switzerland) (left), and double plating using a supplemental Variable Angle LCP Dorsal Distal Radius Plate (DePuy Synthes, 
Zuchwil, Switzerland) (right)
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levels with a C-arm (ARCADIS Varic VC10A, Siemens 
Healthineers, Erlangen, Germany). Based on the ML 
radiographs, angular displacement of the lunate facet 
fragments was measured with respect to the radius 
shaft in the sagittal plane by evaluating the angle change 
between the K-wires. Interfragmentary displacements 
between the styloid process and the lunate facet in the 
coronal plane were measured from the AP radiographs 
by the change in distance between the metal spheres in 
neutral specimen’s position.

Statistical analysis was performed using SPSS soft-
ware package (v.27, IBM SPSS, Armonk, NY, USA). Nor-
mal distribution of the data was screened and proved 
with Shapiro-Wilk test. One-Way Analysis of Variance 
(ANOVA) with Bonferroni Post-Hoc test for multiple 
comparisons and Paired-Samples t-test were applied to 
identify significant differences between the study groups, 
fixation methods and radius inclinations during testing. 
Level of significance was set to 0.05 for all statistical tests.

Results
The results for construct stiffness, angular displacement 
and interfragmentary displacement are summarized in 
Table 1.

In neutral position, flexion or extension, construct stiff-
ness remained without significant differences between 
the three study groups treated with same plate fixation 
– volar or double plating (p ≥ 0.15). However, for each 
separate group and fixation method, stiffness in neu-
tral position was significantly higher versus both flexion 
and extension (p < 0.01), being not significantly different 
between flexion and extension (p ≥ 0.13). In each tested 
position, stiffness increased significantly after supple-
mental dorsal plating in both Group 2 and Group 3 
(p ≤ 0.02), but not in Group 1 (p ≥ 0.12).

Following volar plating, angular displacement in neu-
tral position, flexion or extension was significantly lower 
in Group 1 compared with both Group 2 and Group 3 
(p < 0.01), being not significantly different between Group 

Fig. 4  Test setup with a specimen mounted for biomechanical testing in extension, with vertical arrow denoting the loading direction, and 
indicated inclination angle of the radial shaft
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2 and Group 3 (p ≥ 0.93). In each tested position, angular 
displacement decreased significantly after supplemental 
dorsal plating in both Group 2 and Group 3 (p < 0.01), 
but not in Group 1 (p ≥ 0.13), and did not demonstrate 
any significant differences between the three groups after 
double plate fixation (p ≥ 0.74). In addition, for each sep-
arate group and fixation method, angular displacement in 
neutral position was significantly lower versus both flex-
ion and extension (p ≤ 0.03), whereas it did not differ sig-
nificantly between the latter two inclinations (p ≥ 0.14).

Interfragmentary displacements between the styloid 
process and lunate facet in neutral position were below 
0.5 mm and did not reveal any significant differences 
among the study groups and fixation methods (p ≥ 0.63).

Discussion
This study compares the biomechanical competency 
between volar locked plating and combined dorsal and 
volar double plate fixation of complex DRFs. We used 
three fracture models with different degrees of comminu-
tion to investigate the impact of lunate facet separation 
on the fracture stability.

Our investigation proves that when the dorsal third of 
the lunate facet is not separated by a fracture line, volar 
locked plating and double plating achieve comparable 
stability.

In contrast, double-plated constructs demonstrated 
superior fixation stability compared with a single volar 
locked plating in cases of lunate facet comminution 
within its dorsal third.

Currently, no existing studies seem to conclude and 
recommend if and when additional dorsal support 
would be necessary for reliable fixation of fracture 

patterns featuring the various specific types of lunate 
facet fragmentation.

Several biomechanical studies have focused primarily 
on comparisons between various volar or dorsal plate 
fixations [20–24]. However, a relationship between the 
stability of those constructs and the degree of lunate 
facet comminution has not been investigated.

We considered it justified to contrast the existing 
reports – advocating single volar locked plating as 
being able to provide reliable stability for most dorsally 
comminuted DRFs – via a carefully designed biome-
chanical experiment in the current study, in order to 
provide evidence answering the question which cases 
would require additional dorsal support [24–28].

In our study, Group 1 implemented a reference frac-
ture model based on previous biomechanical work 
[15, 25, 26]. In accordance with previous investiga-
tions, three different test setups and protocols with 
non-destructive axial compression and volar or dorsal 
bending of the distal radius were developed to resemble 
early postoperative wrist motion and grasp [25–31].

In the current clinical practice, most dorsally com-
minuted DRFs are treated with volar instead of dorsal 
locking plates – an algorithm followed with insufficient 
evidence [8, 32, 33].

A dorsal approach has been suggested for some 
intraarticular fractures [1, 25], especially with lunate 
facet comminution involving dorsoulnar fragmenta-
tion. Dorsal plate application is performed with an 
additional surgical approach, which can result in addi-
tional surgical trauma and higher complication rates 
due to the small volume of the dorsal compartments. 
Most common complications are extensor tendon rup-
tures and tenosynovitis [12, 15, 34–43].

Table 1  Stiffness (ST), angular displacement (AD) and interfragmentary displacement (ID) in the three study groups (GR) for volar (V) 
and double (D) plating (PL) under neutral (N) loading condition, flexion (F) and extension (E), in terms of mean and standard deviation. 
P-value (P) indicates statistical differences between volar and double plating for the respective outcome. Bold values indicate 
significant differences

GR PL ST [N/mm] AD [°] ID [mm]

N F E N F E N

1 V 187.5 (48.4) 51.4 (14.2) 41.5 (11.3) 0.38 (0.18) 0.75 (0.26) 0.88 (0.32) 0.19 (0.07)

D 197.5 (51.6) 55.6 (15.9) 48.9 (15.4) 0.28 (0.10) 0.67 (0.19) 0.72 (0.24) 0.17 (0.06)

P 0.12 0.15 0.27 0.13 0.27 0.14 0.81

2 V 158.5 (44.4) 41.5 (13.7) 35.7 (9.9) 1.23 0.35) 1.95 (0.53) 2.42 (0.75) 0.22 (0.10)

D 196.5 (50.5) 54.4 (15.3) 47.5 (14.9) 0.31 (0.13) 0.71 (0.22) 0.76 (0.27) 0.20 (0.08)

P < 0.01 < 0.01 0.02 < 0.01 < 0.01 < 0.01 0.41

3 V 155.9 (44.2) 40.7 (13.1) 34.7 (9.2) 1.32 (0.47) 2.11 (0.62) 2.66 (0.79) 0.23 (0.10)

D 189.3 (49.7) 53.8 (14.9) 46.9 (13.5) 0.34 (0.15) 0.74 (0.23) 0.82 (0.29) 0.22 (0.09)

P < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.75
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The need for dorsal support and several findings 
of our study can be explained with the mechanism of 
loading and injury of the lunate facet. The three-col-
umn theory of the distal radius was introduced in the 
context of dorsal buttress double plating and later cor-
roborated in several in-vivo and in-vitro studies [30, 
44]. The fragmentation of the lunate facet is a direct 
consequence of the loading conditions described by 
this theory. Secure fixation of the intermediate column 
– heavily loaded in compression – has attracted the 
interest of a number of investigators [15, 22, 23, 45–48].

A previous investigation reported on the bending 
moments acting on the bone-implant constructs and 
concluded that they increase as the point of the respec-
tive force application moves away from the plate [43]. 
Therefore, the more dorsally the point of force applica-
tion is located, the greater the mechanical disadvantage 
will become, which can be counteracted with a volar 
plate.

The load transmission at the distal radius was shown 
to be concentrated on the volar side during flexion and 
more dorsally during extension [49, 50]. In contrast, a 
previous investigation, comparing in-vitro and in-vivo 
results, concluded that the load distribution to the 
lunate facet in flexion and extension is generally equal-
ized [30]. In our test setups we implemented different 
distal load distributions for flexion and extension of 
the distal radius but the results were still comparable 
between these two positions for each separate fracture 
model and fixation method.

A number of clinical studies demonstrated that small 
volar DRF fragments are challenging to address and that 
an unstable fixation may result in radiocarpal and radi-
oulnar joint subluxations [4, 5, 28, 51].

The importance of the dorsoulnar fragment and its 
contribution to construct stability has attracted rather lit-
tle attention and the few available reports provide con-
flicting evidence. It is known that this fragment of the 
distal radius articular surface contributes considerably 
to the congruency of the distal radioulnar joint [7, 52]. 
Moreover, it plays a crucial role in the maintenance of an 
adequate sagittal radiocarpal alignment and the preven-
tion of dorsal collapse [2].

In several cadaveric biomechanical studies, the change 
in contact pressure of the wrist was investigated for 
step-off intraarticular malunions [53, 54]. A step-off of 
1 mm or more within the volar lunate facet was found 
to increase the contact pressure in the radiocarpal joint, 
whereas no considerable  contact pressure change was 
reported at an articular step-off of up to 2 mm within the 
dorsal distal radius [55]. These findings could explain why 
a volar lunate facet incongruity leads to poor outcomes, 
whereas a displaced dorsal rim fragment does not [53].

A finite element investigation reported that in pres-
ence of a 1 mm step-off within the volar lunate facet, the 
contact stress distributions shifted towards the ulna [55]. 
A retrospective study demonstrated that the size of the 
dorsoulnar fragment is not associated with occurrence of 
postoperative fracture displacement [2]. Although fixa-
tion of this fragment – shared by the distal radioulnar 
and radiocarpal joints – appears valuable in preventing 
postoperative fracture dislocation, there is no existing 
consensus on its optimal fixation method. Some authors 
proposed fixation of the dorsoulnar fragment with a low-
profile plate via additional 30 mm dorsal approach [1] 
or application of a single-fragment compression screw 
through a small incision [7]. In another work, the dor-
soulnar fragment was targeted with volar plate screws 
after anatomical DRF reduction [53]. However, the screw 
length selection is under discussion because penetration 
of the dorsal cortex would lead to extensor tendon irri-
tation or rupture, whereas missing screw support at the 
far cortex raises the question about insufficient stability 
of fixation.

In our study, no articular step-off of the lunate facet 
was observed irrespective of the fragmentation pattern.

The fracture model in Group 1 was the same as in pre-
vious work comparing the biomechanical competency 
of volar and double plated constructs representing AO/
OTA 23-C2.1 fractures [24]. According to those findings, 
the two fixation methods revealed comparable biome-
chanical characteristics, which is in line with our study 
results.

In the present investigation, the magnitude of angular 
displacement of the lunate facet fragments with respect 
to the radial shaft after volar plating  was related to the 
degree of comminution within the dorsal third of the 
lunate facet. In presence of such a comminution, con-
siderably decreased angular displacement was observed 
following double plating. Due to the dorsal metaphyseal 
defect as a whole, simulated via a dorsal wedge-shaped 
osteotomy gap and being the principal source of instabil-
ity, the tested specimens demonstrated only extraarticu-
lar displacement.

This study has some limitations inherent to all biome-
chanical investigations. A limited sample size of synthetic 
bones was used, resulting in restriction of the translation 
to generalized clinical applications. In agreement with 
previous work, the radii were consistently selected to be 
similar in size in order to provide less variation between 
the study groups [48]. An osteoporotic bone model was 
not explicitly tested. Despite this, we were able to detect 
several significant differences related to the different 
simulated fracture patterns, plate fixations and tested 
specimens’ positions. The fracture creation via osteoto-
mizing did not necessarily obey the physical laws of real 
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fracture mechanisms, however, it was performed because 
of standardization purposes. Moreover, fragmenta-
tion patterns of the lunate facet in real life can rarely be 
assigned to standardized groups with four or five fracture 
fragments. In addition, the anatomic reduction of articu-
lar fragments in controlled laboratory settings were only 
vaguely similar to the more complicated in-vivo situa-
tions. The setup for testing of the specimens in neutral 
position, flexion and extension was a gross simplification 
of the real fractured-bone situation and physiological 
loading conditions, not necessarily replicating the more 
complex in-vivo situations that may include torsional and 
bending moments. Furthermore, the biomechanics of in-
vivo fracture healing could not be simulated. Instead, a 
direct post-operative primary stability situation without 
bone consolidation as worse-case scenario was explored.

Conclusion
From a biomechanical perspective, fracture patterns fea-
turing comminution of the lunate facet within its dorsal 
third significantly affect stability when comparing volar 
and double plate fixations of complex intraarticular distal 
radius fractures.

Double plating demonstrates superior fixation stabil-
ity versus single volar plating only in case of lunate facet 
comminution within its dorsal third. In contrast, volar 
locked plating could achieve comparable stability versus 
double plate fixation when the dorsal third of the lunate 
facet is not separated by the fracture pattern. Both fixa-
tion methods indicate a potential of achieving absolute 
stability between the articular fragments.

From a clinical perspective, fracture fixation should 
be performed with a single volar plate only in cases with 
appropriate dorsoulnar fragment size of at least 6 mm 
when adequate anatomical reduction is possible.
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