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Abstract 

Background: Intraoperative proximal femoral fractures (IPFF) are relevant complications during total hip arthroplasty. 
Fixation using cerclage wires (CW) represents a minimally-invasive technique to address these fractures through the 
same surgical approach. The goal of treatment is to mobilise the patient as early as possible, which requires high 
primary stability. This study aimed to compare different cerclage wire configurations fixing IPFF with regard to biome-
chanical primary stability.

Methods: Standardised IPFF (type II, Modified Mallory Classification) were created in human fresh frozen femora 
and were fixed either by two or three CW (1.6 mm, stainless steel). All cadaveric specimens (n = 42) were randomised 
to different groups (quasi-static, dynamic) or subgroups (2 CW, 3 CW) stratified by bone mineral density determined 
by Dual Energy X-ray Absorptiometry. Using a biomechanical testing setup, quasi-static and dynamic cyclic failure 
tests were carried out. Cyclic loading started from 200 N to 500 N at 1 Hz with increasing peak load by 250 N every 
100 cycles until failure occurred or maximum load (5250 N) reached. The change of fracture gap size was optically 
captured.

Results: No significant differences in failure load after quasi-static (p = 0.701) or dynamic cyclic loading (p = 0.132) 
were found between the experimental groups. In the quasi-static load testing, all constructs resisted 250% of the 
body weight (BW) of their corresponding body donor. In the dynamic cyclic load testing, all but one construct 
(treated by 3 CW) resisted 250% BW.

Conclusions: Based on this in vitro data, both two and three CW provided sufficient primary stability according 
to the predefined minimum failure load (250% BW) to resist. The authors recommend the treatment using two CW 
because it reduces the risk of vascular injury and shortens procedure time.
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Background
Total hip arthroplasty (THA) is considered one of the 
most successful surgical interventions [1]. However, even 
this frequently performed operation is associated with 
complications. Femoral fractures like fissures of the prox-
imal femur are a frequent intraoperative complication [2], 
especially in the presence of limited bone quality (osteo-
penia or osteoporosis) in geriatric patients [3, 4]. There 
is a trend away from cemented towards uncemented 
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femoral stem fixation, further increasing the risk of intra-
operative proximal femoral fractures (IPFF) [5, 6]. The 
incidence rate of IPFF is reported to range from 1.0 to 
3.2% [2, 4, 5, 7]. Even higher incidences of 2.2 to 13.4% 
are reported with the use of cementless Spotorno stems 
[8] as a result of their straight and tapered design as well 
as the associated proximal and metaphyseal load appli-
cation to the bone. Conservative management is not 
appropriate in most cases, especially in case of unce-
mented implantation, due to the risk of crack propaga-
tion or fracture displacement [9] which often leads to 
prolonged bone healing process and immobilisation [10] 
as well as high costs incurred by the health care system 
[11]. For the mostly geriatric patient population, IPFF can 
have further serious consequences like an increased risk 
of nosocomial infections, thromboembolic events, and 
mortality due to aggravated or delayed mobilisation [12, 
13]. Therefore, the goal of treatment is to achieve frac-
ture fixation with high primary stability in order to allow 
patient’s early mobilisation. Preferably, this fixation can 
be done through the existing surgical approach that was 
chosen for implantation of THA components. For these 
reasons, cerclage wiring has become an established fixa-
tion option to stabilise IPFF [14, 15]. It can be assumed 
that a larger number of cerclage wires (CW) will provide 
higher primary stability. However, there is a risk that CW 
can pinch or injure blood vessels [16], why the number of 
CW used should be as small as possible in order to mini-
mise this risk while attaining the same stability. There-
fore, the purpose of this study is to evaluate the primary 
stability of fixed IPFF using different numbers of CW.

Methods
For all tests, chemically untreated human fresh frozen 
cadaveric femora were used. The femora were provided 
by the Institute of Anatomy (Leipzig University). The 
body donors had given written consent to dedicate their 
bodies to medical education and research purposes dur-
ing their lifetime. Being part of the body donor program 
regulated by the Saxonian Death and Funeral Act of 1994 
(3rd section, paragraph 18, item 8), institutional approval 
for the use of the post-mortem tissues of human body 
donors was obtained. The Femora were stored at − 80 °C. 
prior to testing, the specimens were analysed using Dual 
Energy X-ray Absorptiometry (DXA) (Hologic Delphi A 
QDR-Series, Hologic, Inc., Marlborough, MA, USA) and 
randomised to different groups (quasi-static, dynamic) 
including two subgroups (2 CW, 3 CW) each stratified 
by bone mineral density (BMD). After thawing at room 
temperature for 24 h, typical femoral Spotorno stems 
(CBC Evolution, Mathys AG Bettlach, Bettlach, Swit-
zerland) were inserted by a fellowship-trained surgeon. 
The choice of implant size was made to achieve press-fit. 

Standardised intraoperative fractures (type II, Modified 
Mallory Classification) [17] were created propagating 
medially along the femoral shaft (Fig.  1b). The fracture 
gap ended distally at 80% of the length of the femoral 
stem respecting the individual proportions of femur and 
stem. The fracture was then stabilised using either two or 
three monofilament CW (1.6 mm, 316 L stainless steel, 
Synthes, USA; Fig. 1a) which were tensioned and fixed by 
twisting the ends of the wires. All CW were placed along 
the entire length of the fracture as previously recom-
mended [18, 19]. Fracture gap was reduced as much as 
possible [20].

The distal end of the femoral specimen was resected 
with an oscillating saw 150 mm distal to the end of the 
stem. The cut of the femoral shaft was made in a way that 
it was perpendicular to the ideal Mikulicz line (aligning 
the center of the femoral head to the middle of the knee 
joint) using a custom-designed gauge. The distal end of 
the specimen was potted in a steel sleeve (height: 10 mm, 
diameter: 70 mm) with a quick setting polyurethane sys-
tem (RenCast FC 52/53, Huntsman Advanced Materi-
als, Basel, Switzerland). For testing, the construct was 
secured to a fixture on a servopneumatic testing machine 
(Type 2082/000, DYNA-MESS Prüfsysteme GmbH, Stol-
berg, Germany) (Fig. 2a). Axial load parallel to the Miku-
licz line was applied to an attached ceramic femoral head 
(diameter: 36 mm; size: L, Mathys AG Bettlach, Bettlach, 
Switzerland) through a steel replica of the acetabular cup. 
The femur was aligned using a sliding X-Y table to ensure 
no transverse forces were applied to the femur at the 
beginning of the test.

Quasi‑static load testing
Two experimental groups were tested including eleven 
fractured femora each. In one group, the femora were 
treated by two CW whereas the femora of the other 
group were treated by three CW.

The quasi-static load was increased under displace-
ment-control at a rate of 0.2 mm/s until failure  (F_failure). 
Failure was defined as either audible crack, visible frac-
ture of the femur, failure of at least one CW, or reaching 
maximum load of the load cell set at 10 kN.

The quasi-static test was designed to prove the effect 
of constant uniaxial loads on the femur’s stability. In dif-
ferent studies, Bergmann et al. [21–23] provide curves of 
hip contact forces, measured in  vivo in patients during 
single-leg stance using instrumented total hip implants. 
Averaged peak loads of 231, 240, and 275.7% body weight 
(BW) of the corresponding patients were determined. 
The mean value of the loads provided is approximately 
249% BW. Thus, if a specimen resists the defined fail-
ure load of 250% BW, sufficient primary stability can be 
assumed.
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Dynamic cyclic load testing
Two experimental groups consisting of fractured femora 
were tested. In the experimental group using two CW, 
two of eleven specimens were excluded because of frac-
tures around the greater trochanter. No specimens were 

excluded in the other group. Thus, nine specimens were 
treated by two CW whereas eleven specimens were 
treated using three CW.

Dynamic cyclic load testing was conducted under the 
loading protocol shown in Fig.  3. The test consisted of 

Fig. 1 a Proximal femur with inserted stem (red: fracture gap, green: cerclage wires). Position A was proximal and position B distal to the lesser 
trochanter. Position C was 20 mm proximal to the distal end of the fracture gap. b Marker positioning of the corresponding measuring point (MP) 
on the fractured proximal femur: MP 1 was at the level of the lesser trochanter, while MP 3 was 10 mm proximal to the distal end of the fracture gap, 
and MP 2 was exactly in the middle of MP 1 and MP 3

Fig. 2 a Schematic test setup with construct to be tested. b Human cadaveric femur rigidly fixed to the test rig and observed by a 3D camera 
measuring system
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a ramp load of 200 N within the first 10 s and a series of 
increasing sinusoidal cyclic loads, each with a duration of 
100 cycles at a frequency of 1 Hz. While first cyclic load-
ing series ranged between 200 N and 500 N, the maxi-
mum load of the following ones was increased by 250 N 
each while maintaining minimum load of 200 N. The test-
ing procedure was stopped when an audible or visible 
fracture of the femur occurred, or at least one CW failed. 
The test was also stopped after 100 cycles with a maxi-
mum load of 5250 N, which is known as maximum cyclic 
physiological load proven by in vivo studies [24].

The dynamic test was designed to quantify the resist-
ance to uniaxial cyclic loading. In contrast to realis-
tic loading conditions, like walking or jogging [24], the 
direction of load application was constant and no torque 
was applied throughout the in  vitro test. Nevertheless, 
during walking, mean peak hip contact forces of approxi-
mately 250% BW occur similar to those during single-leg 
stance [22, 23, 25]. Thus, if a specimen resists this load, 
sufficient primary stability can be assumed.

During the testing procedure, change of fracture gap 
size was recorded in addition to failure load. For this 
purpose, each measuring point (MP) at the femur was 
assigned with a pair of markers (Fig. 1b). The marker dis-
placement was tracked using an image correlation system 
(Q400, Limess Messtechnik und Software GmbH, Kre-
feld, Germany) (Fig. 2b). As 200 pictures were taken with 

a frame rate of 10 fps during the measurement, 20 cycles 
per cyclic loading series were recorded. After the meas-
urement, spatial marker positions from this image data 
were calculated. The magnitude of the difference vec-
tor of the positions of two adjacent markers was used to 
define the change of fracture gap size when the construct 
was loaded or unloaded. This calculation was performed 
for all three measuring points every 500 N until 5000 N 
or failure load of the femur was reached. The changes 
of fracture gap size were averaged over the recorded 
20 cycles per cyclic loading series.

Statistical analysis
Statistical analysis was performed using SPSS 27.0 (IBM 
Corp., Armonk, New York, USA). Results are reported 
as mean ± standard deviation. The normality of the data 
was assessed visually with a histogram and quantitatively 
with the Shapiro-Wilk test. The statistical significance 
of difference between two groups was tested using the 
unpaired Student’s t-test. Statistical significance was set 
at p = 0.05.

Results
Quasi‑static load testing
Two groups with eleven femoral specimens each were 
successfully tested and failure loads determined (Supple-
mentary file 1). The results are given in Table 1 and Fig. 4. 

Fig. 3 Used cyclic loading protocol

Table 1 Group-specific characteristics (quasi-static load testing)

Group Number of 
Males

Body Weight in N P‑value BMD in g/cm3 P‑value Failure Load in N Body Weight 
Failure Load 
in %

2 CW 6 581.5 ± 158.4 0.027 0.706 ± 0.125 0.675 3727.5 ± 1115.1 658.7 ± 178.2

3 CW 6 809.8 ± 275.7 0.674 ± 0.214 3953.6 ± 1565.0 519.2 ± 223.7
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None of the femora tested resisted the maximum load of 
the load cell (10 kN). All constructs treated with two or 
three CW resisted at least 250% BW. The normally dis-
tributed failure loads (p = 0.701) and BW related failure 
loads (p = 0.122) of the experimental groups were not 
different.

Dynamic cyclic load testing
In the experimental group using two CW, nine femoral 
specimens and in the other group eleven femoral speci-
mens were successfully tested and failure loads deter-
mined (Supplementary file 2). While two of nine femora 
tested resisted the predefined maximum load of 5250 N, 
only one of eleven femora of the other group reached 
this load. Nevertheless, the normally distributed failure 
loads (p = 0.132) and BW related failure loads (p = 0.346) 
between the groups showed no significant differences. All 
nine constructs treated with two CW and all but one of 
the eleven constructs treated with three CW resisted at 
least 250% BW. The results are given in Table 2 and Fig. 5.

The results of the fracture gap size measurement are 
shown in Fig.  6. Results are only shown and compared 
up to a force of 3000 N, as only two specimens of the 
group using three CW resisted higher loads (Supple-
mentary file 3). At MP 1, the fracture gap widened with 
increasing force in both groups but showed no significant 

differences at all times. The same applies to MP 3, as 
there were no significant differences between the groups. 
At MP 2, greater changes of gap size were observed in the 
group using two CW. While the changes of fracture gap 
size were significantly higher from 500 N to 2000 N, the 
groups did not differ significantly when a higher load was 
applied.

Discussion
With the increasing number of THA and due to the trend 
towards uncemented stem fixation, the incidence of IPFF 
increases [5, 6]. Fracture treatment aims to achieve fixa-
tion with high primary stability allowing early full weight-
bearing. This study aimed to analyse the primary stability 
of IPFF fixation using different numbers of CW. There-
fore, quasi-static and dynamic cyclic loading tests were 
performed on human cadaveric femora determining fail-
ure loads. Additionally, in case of dynamic loading tests, 
the change of fracture gap size was optically captured to 
determine crack opening while loading.

Some authors suggest cerclage wiring should only 
act as adjunct to nail or plate fixation [26–28]. In some 
cases, however, the authors refer to fracture types other 
than the one considered in this study. Perren et al. stated 
insufficient mechanical stability due to the treatment of 
CW, but they only consider type C fractures according to 

Fig. 4 Box plots of failure loads and body weight related failure loads of quasi-static testing groups

Table 2 Group-specific characteristics (dynamic cyclic load testing)

Group Number of 
Males

Body Weight in N P‑value BMD in g/cm3 P‑value Failure Load in N Body Weight 
Failure Load 
in %

2 CW 4 714.0 ± 197.2 0.500 0.670 ± 0.166 0.638 3963.9 ± 1277.8 586.4 ± 227.1

3 CW 5 653.7 ± 192.6 0.705 ± 0.158 3116.1 ± 1125.2 499.7 ± 173.4
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the Vancouver classification [28]. Other authors such as 
Agarwala et  al. also reported inadequate stability when 
using CW but they do not specify the fracture type or 
evidence supporting their thesis. In contrast, Park et  al. 
proved very good results of calcar crack treatment using 
CW based on fixation’s sufficiently high primary stabil-
ity [29]. Fishkin et al. also concluded in their biomechani-
cal study that cerclage wiring can lead to sufficiently high 
primary stability needed for patient’s early mobilisation 
[19]. Their results demonstrate the superiority of two or 
three CW compared to the use of only one CW based on 
measurements of the fracture gap size at discrete loads. 
Therefore, they recommend the usage of at least two CW 
treating femoral cracks. In accordance to Fishkin et  al., 
the results of the present study show that the fixation of 
standardised IPFF (type II, Modified Mallory Classifica-
tion) using two or three CW provides sufficient primary 
stability against uniaxial loads.

To the best of our knowledge, the only comparable 
biomechanical study was carried out by Frisch et  al. 
[30]. They also examined different cerclage fixation tech-
niques. However, in contrast to the present study, they 
used artificial bones, applied quasi-static axial loads and 
quasi-static torques. Their used monofilament cerclage 
wires showed a similar mean failure load (4010 N) in 
comparison to our study (3727.5 N). However, the com-
parability of artificial bones and human bones is severely 
limited because the artificial bones are more stable than 
the commonly used human bones of geriatric patients. 
They rather simulate the mechanical behaviour of young, 
healthy bones [31].

As no significant differences could be found neither in 
the quasi-static nor in the cyclic test, and only one sam-
ple withstood less than 250% BW in all tests performed, 

it can be assumed that both cerclage wiring techniques 
provide sufficient primary stability according to axial 
peak hip contact forces simulating walking or single-leg 
stance. However, proof of application necessity of three 
CW was not possible. With regard to the increasing risk 
of complications related to the use of additional CW, like 
injury of blood vessels [16, 32] or bone surface resorption 
[15], as least CW as required should be used. Another 
advantage of using lesser CW is the shortening of pro-
cedure time [33]. Therefore, in the authors’ opinion, frac-
ture treatment using two CW is to prefer.

Nonetheless, this study has several limitations. As a 
major limitation, it should be noted that only axial loads 
were analysed. In accordance with other in vitro studies 
using uniaxial testing machines [19, 30], we applied loads 
of only one direction. Thus, we only determined speci-
mens’ resistance to one force direction. In dynamic activ-
ities like walking the direction of the hip contact force 
changes during the gait cycle [23]. In addition, activities 
like this are characterised by occurring torque loads. 
However, we did not combine the axial loads with these 
occurring torque loads. Therefore, no statement can be 
made about the torsion stability of the fixation technique 
used. Further, study results are only valid for the stems 
tested. Another limitation to this study was the low sam-
ple size. Although the sample size was comparable to 
previous biomechanical studies of proximal femoral frac-
tures [19, 34], it was nevertheless small. That we were 
unable to identify a significant advantage of one fixation 
technique may be a consequence of our limited sample 
size.

It is noticeable that the change of fracture gap 
size generally is at a very low level (< 100 μm) dur-
ing dynamic cyclic loading. There were no differences 

Fig. 5 Box plots of failure loads and body weight related failure loads of dynamic cyclic testing groups
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Fig. 6 Box plots of load-dependent change of fracture gap size of dynamic cyclic load testing groups regarding MP 1, 2, and 3 (blue: 2 CW, green: 3 
CW)
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between the two fixation techniques at the proximal 
MP 1 and the distal MP 3. At MP 2, fractures treated by 
only two CW showed significantly higher movements 
recognisable by larger changes in fracture gap size. As 
described in the literature, a positive effect on callus 
formation can be assumed due to higher interfragmen-
tary movements within this area [20, 35, 36]. Consid-
ering that, size of movement should be in a range of 
0.2 mm to 1.0 mm [37]. The determined changes in 
fracture gap size were below this range, thus no positive 
effect is assumed due to the increased movement.

In contrast, the small movements determined have a 
favourable impact on prosthesis’ osseointegration. Due 
to the geometric conditions, it can be assumed that the 
largest movement between prosthesis and bone occurs 
at the fracture gap. Therefore, the micromotions of the 
bone-implant interface are below 100 μm. In literature 
it is mentioned, that below the threshold of 150 μm 
bone formation occurs on the bone-implant interface 
[38]. Consequently, osseointegration should not be 
threaten by the movements at the fracture gap.

Conclusions
IPPF are a relevant complication following THA, which 
mainly occurs in elderly patients. Early mobilisation is 
desirable to prevent risks such as thrombosis, embo-
lism or pneumonia. Therefore, the aim is to achieve a 
sufficiently high primary stability to allow early weight-
bearing and daily rehabilitation exercises without 
extensive treatments like stem changes or plate osteo-
synthesis. This in  vitro biomechanical study showed, 
that both two and three CW provide sufficient primary 
stability for fixation of intraoperative proximal femoral 
fractures according to the predefined minimum failure 
load (250% BW) to resist. In the authors’ opinion, there 
are several advantages of the fracture fixation using 
only two CW like procedure time reduction and risk 
minimization of vascular injury.
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