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Abstract
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Background: Several hip and knee pathologies are associated with aberrant femoral torsion. Diagnostic workup includes
computed tomography (CT) and magnetic resonance imaging (MRI). For three-dimensional (3D) analysis of complex
deformities it would be desirable to measure femoral torsion from MRI data to avoid ionizing radiation of CT in a young
patient population. 3D measurement of femoral torsion from MRI has not yet been compared to measurements from CT
images. We hypothesize that agreement will exist between MRI and CT 3D measurements of femoral torsion.

Methods: CT and MRI data from 29 hips of 15 patients with routine diagnostic workup for suspected femoroacetabular
impingement (FAI) were used to generate 3D bone models. 3D measurement of femoral torsion was performed by two
independent readers using the method of Kim et al. which is validated for CT. Inter-modalitiy and inter-reader intraclass

Results: Between MRI and CT 3D measurements an ICC of 0.950 (0.898; 0.976) (reader 1) respectively 0950 (0.897; 0.976)
(Reader 2) was found. The ICC (95% Cl) expressing the inter-reader reliability for both modalities was 0.945 (0.886; 0.973) for
MRI'and 0.957 (0910; 0.979) for CT, respectively. Mean difference between CT and MRl measurement was 042° (MRl - CT, SD:

Conclusions: There was consistency between 3D measurements of femoral torsion between computer rendered MR
images compared to measurements with the “gold standard” of CT images. ICC for inter-modality and inter-reader
consistency indicate excellent reliability. Accurate, reliable and reproducible 3D measurement of femoral torsion is possible
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Background

Femoral torsion was described as the angle between the
femoral neck and the femoral condyles by Julius Wolff
in 1868 [1, 2]. Several pathologies are associated with ab-
errant femoral torsion, such as slipped capital femoral
epiphysis, developmental dysplasia of the hip and early-
onset hip osteoarthritis [3-5]. There is an association
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between reduced femoral antetorsion and cam-type
femoroacetabular impingement (FAI) [6-8].

Clinical quantification of femoral torsion is not reliable
[6, 9, 10]. Initially standard radiographs such as the
Dunn and modified Dunn view were used [1, 2, 11]. This
has been replaced by more precise computer tomog-
raphy (CT) and magnetic resonance imaging (MRI) mea-
surements with various differences in measurement
techniques for both of them [12, 13]. All these conven-
tional methods that use cross sectional CT, MRI or
ultrasound are two-dimensional (2D) imaging methods
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and encounter problems representing the complex,
three-dimensional (3D) structure of the femur. To over-
come the limitations of conventional 2D imaging
methods, a 3D imaging method was developed by Kim
et al. with greatly improved accuracy compared to con-
ventional 2D imaging methods [14, 15]. These 3D mea-
surements require CT imaging which has become the
“gold standard” for quantification of 3D bone morph-
ology in patients with structural hip disorders, such as
FAI [16-20]. But using CT to characterize 3D hip
morphology in the mostly young population of FAI pa-
tients is controversial due to potential harmful ionizing
radiation exposure (about 4-5 mSv per CT) with a small
lifetime attributable risk (0.034-0.177% for a 20-year-
old) but a large relative risk (5-17 times) of cancer com-
pared with radiographs alone [21, 22]. On the other
hand MRI is useful to evaluate intra- and extra-articular
soft tissue structures and the cartilage [23-28]. Thereby
it provides essential predictors for the benefit of FAI sur-
gery [29].

It would be preferable to measure the femoral torsion
in 3D from MRI images without the need of additional
CT imaging and consequently avoiding harmful ionizing
radiation and save healthcare resources.

To understand complex deformities 3D measurements
can be helpful. That is why they are desirable to get, best
with as little as possible additional expenses. Correction
of such complex deformities in particular may benefit
from 3D analysis and 3D planning of the deformity cor-
rection to minimize errors which could lead to biomech-
anical alteration [30—32]. The required 3D bone models
can be generated from CT or MRI data [33-37].

However, the proof that 3D femoral torsion measure-
ments from MRI generated 3D models correspond with
measurements from CT generated 3D models has not
occurred yet. The aim of this paper was to investigate if
3D measurement of femoral torsion from MRI yielded
comparable results as measurement from CT data. We
hypothesized that agreement existed between recon-
structed MRI and CT 3D measurements of femoral
torsion.

Methods

Patient selection

The local ethical committee approved this study (BASEC
Number 2012-02242) and all patients gave their in-
formed written consent for their participation and the
publication of this study.

We retrospectively analysed CT and MRI data of 29
hips from 15 patients (7 female, 8 male) who had routine
workup for clinical symptoms suggestive for FAI be-
tween May and November 2019. The average age at the
time of the scans was 32 years (range 21-47 years). Four-
teen patients had an MRI and a CT scan of both sides.
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One patient had imaging only of the right side, which
lead to a total of 29 hips (15 right hips, 14 left hips) with
complete MRI and CT dataset.

Imaging and segmentation

All CT scans were performed at our institution, using a
64-detector row CT scanner (Somatom Edge Plus, Sie-
mens Healthcare, Erlangen, Germany), slice thickness
was 1.0 mm. The protocol was as follows: Feet first, su-
pine; central positioning of the pelvis, slightly internal
rotation of the legs; image centered in the middle of the
pelvis slightly above the iliac crest. The proximal femur
was scanned from just above the iliac crest to the end of
the lesser trochanter. The distal femur was scanned from
the femoral condyles to the joint line.

MRI were also performed at our institution using a 3.0
Tesla MR scanner (Magnetom Skyra 3.0 T; Siemens
Healthcare, Erlangen, Germany). The protocol was as
follows: Coronal 3D T1-weighted VIBE-Dixon sequence
(femur, bilateral): Slice thickness 1.5mm, FOV
348x655mm, Echo time 5.7 ms, Repetition Time 2.5 ms,
number of images 88.

CT and MRI scans were performed on the same day.
No intraarticular contrast was given for CT scans nor
for MRLscans.

3D measurement method
3D bone models of all included femurs were generated
from CT and MRI data using the global thresholding
and region growing functionality of a standard segmen-
tation software (Mimics Medical 19.0, Materialise NV,
Leuven, Belgium). Segmentation of the MRI was per-
formed using the T1-weighted VIBE-Dixon sequence.
The bone models were imported into the in-house de-
veloped surgical planning software CASPA (Balgrist
CARD AG, Zurich, Switzerland) for 3D measurement of
the femoral torsion (Figs. 1a and b and 2a and b).

3D femoral torsion measurements were performed
subsequently using a method based on Kim et al. [15].
Thereby, femoral torsion is defined as the angle between
the femoral neck axis and the tangent to the posterior
condyles, both projected to a plane perpendicular to the
anatomical axis (Fig. 3). The femoral neck axis is defined
as the line connecting the center of the femoral head
and the center of the cross-section at the narrowest
point of the femoral neck. First, the center of the fem-
oral head was determined by fitting a sphere to the fem-
oral head, minimizing the distance to a user-selected
region on the femoral head [38]. Second, a plane was
manually fit to the narrowest diameter of the femoral
neck, perpendicular to the estimated femoral neck axis.
The center point of the intersection between this plane
and the femoral bone was connected with the center of
the femoral head, resulting in the femoral neck axis.
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Fig. 1 a 3D model of the proximal femur from CT data. b The same 3D model then Ta with the sphere fitted to the femoral head (green), the

cross section at the narrowest point of the femoral neck (red) and the femoral neck axis (yellow), connecting the two centers. Both figures were
created by the authors using the in-house developed surgical planning software CASPA (Balgrist CARD AG, Zurich, Switzerland)

.

)

The tangent to the posterior condyles was determined
by manually fitting a plane to the posterior side of the
femur, in a way that the plane passed through the most
posterior points of the femoral condyles and the most
posterior point of the greater trochanter. The condylar
tangent was then defined as a line between most poster-
ior points of the femoral condyles.

Finally, the anatomical femoral axis was defined be-
tween the centre of an axial cross-section located in the
middle of the tip of the lesser and the greater trochanter
and the centre of an axial cross-section just above the
femoral condyles. By using the three defined axes (i.e.
femoral neck axis, femoral condylar axis, and anatomical
femoral axis), the 3D femoral torsion was calculated in
MATLAB (Version 2019a, The MathWorks Inc., Natick
MA, USA). For inter-reader reliability all 3D femoral

torsion measurements were performed by two independ-
ent readers (TH and LJ).

Statistical analysis

Inter-reader and inter-modality reliability were assessed
with intraclass correlation coefficients (ICC) based on a
two-way random effects and a two-mixed effects model,
respectively. Absolute agreement based on single mea-
sures was analyzed. These analyses were stratified by
reader or by modality as applicable. The standard error
of measurement was computed to yield an estimate of
the expected error associated with a measurement. To
test for a systematic difference in angle measurements
between the modalities, a paired t-test was conducted.
This test was applied on the pooled data from both
readers. Intra-observer variability between CT and MRI

YY

Fig. 2 a 3D model of the proximal femur from MRI data. (Note the much less precise osseous morphology compared to the CT model shown in
Fig. 1). b The same 3D model with the sphere fitted to the femoral head (green), the cross section at the narrowest point of the femoral neck
(red) and the femoral neck axis (yellow), connecting the two centers. Both figures were created by the authors using the in-house developed
surgical planning software CASPA (Balgrist CARD AG, Zurich, Switzerland)
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Fig. 3 Femoral condylar axis (blue) and femoral neck axis (yellow) of
a CT rendered image. The figure was created by the authors using
the in-house developed surgical planning software CASPA (Balgrist
CARD AG, Zurich, Switzerland)
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for both readers were also assessed. Analysis was per-
formed with SPSS (IBM SPSS Statistics for Windows,
Version 26.0. Armonk, NY: IBM Corp.). P-values below
0.05 were considered statistically significant.

Results

Individual 3D measurement values of both readers from
CT and MRI data for all 29 hips are shown in Table 1.
The range of the measured 3D femoral torsion was from
-16.4° to 28.2°.

Inter-modality reliability
The ICC (95% CI) expressing the inter-modality reliabil-
ity for both assessed modalities was 0.950 (0.898; 0.976)
(reader 1) and 0.950 (0.897; 0.976) (reader 2), respect-
ively. The standard error of measurement (SEM) was
1.97° (reader 1) and 1.92° (reader 2), respectively (Fig. 4).
The comparison of angle measurements conducted
with either modality yielded a mean difference of 0.42°
(MRI - CT, SD: 2.77°, p = 0.253).

Inter-reader reliability

The ICC (95% CI) expressing the inter-reader-reliability
for both modalities was 0.945 (0.886; 0.973) for MRI and
0.957 (0.910; 0.979) for CT. The standard error of meas-
urement (SEM) was 2.01° (MRI) and 1.83° (CT), respect-
ively (Fig. 5).

Intra-observer variability
The mean intra-observer variability between CT and
MRI was 1.51 (reader 1) respectively 1.62 (reader 2).

Table 1 3D torsional measurements from CT and MRI from reader 1 and reader 2. Values in °

Subject cT MRI cT MRI cT MRI CcT MRI
Reader 1 Reader 1 Reader 2 Reader 2 Reader 1 Reader 1 Reader 2 Reader 2
RIGHT HIP LEFT HIP

1 14.5° 14.9° 164° 18.1° 17.5° 16.5° 19.4° 16. 2°

2 —94° -0.6° -53° —4.1° —4.7° na. -0.2° na.

3 15.2° 14.1° 13.1° 14.2° 18.2° 18.8° 18.3° 214°

4 124° 8.9° 15.1° 11.4° 9.5° 13.0° 13.5° 16.6°

5 76° 109° 46° 9.5° 10.0° 12.5° 10.2° 83°

[§ 10.5° 11.2° 9.1° 6.5° 4.7° 7.3° 6.2° 7.5°

7 11.9° 86° 8.1° 5.5° 9.1° 104° 8.1° 11.6°

8 20.7° 186° 214° 19.3° 282° 274° 270° 24.2°

9 54° 76° 8.0° 82° 9.0° 6.8° 106° 11.4°

10 1.9° 0.2° 1.0° 2.8° 28° 32° 58° 6.1°

1 54° 33° 02° 08° 20.8° 20. 6° 183° 19.0°

12 —7.2° —4.1° -2.3° —7.2° —15.8° -164° —13.2° -16.0°

13 74° 74° 10.0° 8.5° 33° 3.1° 4.8° 6.2°

14 14.8° 15.8° 14.5° 13.0° 17.1° 13.8° 17.0° 18.2°

15 10.1° 14.4° 14.4° 17.6° 26° 7.3° 54° 12.2°
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Fig. 4 Comparison of the measurements based on the two imaging modalities assessed, for reader 1 and reader 2
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Discussion

The most important finding of the present study is that
consistency exists between 3D measurements of femoral
torsion from MRI and CT reconstructed bone models.
The mean difference of the modalities was very low with
0.42° (MRI — CT, SD: 2.77°, p =0.253). Our hypothesis
was confirmed further by an ICC for the inter-modality
reliability of > 0.9 expressing an excellent reliability [39].
Additionally, inter-reader reliability was estimated to be
excellent indicating high reproducibility of the measure-
ments. The SEM was 1.97° (reader 1) respectively 1.92°
(reader 2). In our opinion the MRI can still provide valu-
able information with a measurement error of 2°.

Three dimensional femoral torsion measurements with
computer rendered CT images using the 3D modeling
method described by Kim et al. is the “gold standard”
[15]. On computer rendered MRI data the anatomy may
be depicted less precise than on CT data, since some

landmarks (i.e. the lesser trochanter) are more difficult
to identify (see Figs. 1 and 2), slice thickness of MRI ro-
tational sequences is usually higher (i.e. 1 mm for CT vs.
1.5mm for MRI in this study) and soft tissue is more
difficult to distinguish from bone and cartilaginous tis-
sue during the segmentation process. Surprisingly, these
large differences do not seem to have a significant im-
pact on the final result of the 3D torsional measure-
ments. MRI is more time consuming than CT (about 91
seconds vs. 5seconds) and so there is a potential for
movement of the patient’s leg between scanning the
proximal femur and the condylar region and thereby in-
fluencing the torsional angle. But still the chance of
complete failure of the MRI is negliable. Anyhow, this is
a hypothesis of the authors and could not be proved by
this study. It is therefore crucial that the rotational se-
quences are scanned as quickly as possible in succession.
The great advantage of MRI is that it can analyze
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Fig. 5 Comparison of the measurements performed by the two readers for both image modalities
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cartilage and soft tissue disorders in addition to bone
conditions whereas the CT is considered to be more pre-
cise for evaluating the bony anatomy. However, previous
studies have shown that MRI can be used as a precise al-
ternative to CT for evaluation of 3D osseous morph-
ology in the shoulder and knee [33, 36]. Moreover, the
identification and location of cam-type morphology was
equivalent using 3D osseous reconstructions of the
femur generated from 3 T MRI and CT scans [40]. How-
ever, none of these studies could show that 3D measure-
ment of patients’ femoral torsion could be performed
from MRI data instead of CT data. To our knowledge
this is the first study that calculates 3D femoral torsion
using MRI data comparing it to 3D femoral torsion mea-
surements form CT data.

Our results indicate that 3D measurement of femoral
torsion can be performed using MRI data, making the
routinely performed CT imaging for measuring the 3D
torsional angle questionable and, thus, giving a potential
to reduce healthcare resources and harmful ionizing
radiation.

We acknowledge limitations of our study. The per-
formed measurement was not analyzed for subgroups of
patients with specific torsional angles (i.e. normal, too
high, too low torsion). Therefore we can only state that
the two measurement methods are comparable within
the range tested in our collective. The number of pa-
tients in this study would be too small to analyze sub-
groups with “extreme” torsional angles and the goal was
primarily to evaluate the accuracy of the measurement
from MRI data in general and should be considered as a
preliminary study that serves as proof of concept.

Further MR image segmentation was performed by a
person without prior academic training in the matter
but he was carefully instructed to carry out the task. In-
dividuals with different levels of training may yield vary-
ing results.

Conclusions

Accurate 3D measurement of femoral torsion is possible
from MRI images. It shows consistency compared to
measurements with the “gold standard” of CT images in
our collective of 29 hips.

Abbreviations

2D: Two-dimensional; 3D: Three-dimensional; CT: Computer Tomography;
FAI: Femoroacetabular impingement; ICC: Intraclass correlation coefficients;
MRI: Magnetic Resonance Imaging
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