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Abstract

Background: Physical activity (PA) is important to general health and knee osteoarthritis (OA). Excessive workplace
PA is an established risk factor for knee OA however, appropriate methods of measurement are unclear. There is a
need to examine and assess the utility of new methods of measuring workplace PA and estimating knee load prior
to application to large-scale, knee OA cohorts. Our aims, therefore, were to monitor workplace PA and estimate
lower-limb loading across different occupations in health participants.

Methods: Twenty-four healthy adults, currently working full-time in a single occupation (2 35 h/week) and free of
musculoskeletal disease, comorbidity and had no history of lower-limb injury/surgery (past 12-months) were
recruited across New South Wales (Australia). A convenience sample was recruited with occupations assigned to
levels of workload; sedentary, light manual and heavy manual. Metrics of workplace PA including tasks performed
(i.e, sitting), step-count and lower-limb loading were monitored over 10 working days using a daily survey,
smartwatch, and a smartphone.

Results: Participants of light manual occupations had the greatest between-person variations in mean lower-limb
load (from 2 to 59 kg*m/s3). Lower-limb load for most participants of the light manual group was similar to a
single participant in heavy manual work (30 kg*m/s3) and was at least three times greater than the sedentary
group (2 kg*m/s3). The trends of workplace PA over working hours were largely consistent, per individual, but rare
events of extreme loads were observed across all participants (up to 760 kg*m/s3).
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be applied to future occupational studies of knee OA.

Conclusions: There are large interpersonal variations in metrics of workplace PA, particularly among light and
heavy manual occupations. Our estimates of lower-limb loading were largely consistent with pre-conceived levels
of physical demand. We present a new approach to monitoring PA and estimating lower-limb loading, which could

Keywords: Occupation, Physical activity (PA), Fitbit, Smartphone, Load-rate

Introduction

Workplace and recreational/leisure physical activity (PA)
has been shown to be a key contributor to maintaining
and improving general health with low levels of PA asso-
ciated with increased all-cause mortality [1, 2], particu-
larly among those with pre-morbid conditions such as
osteoarthritis (OA) [3]. Despite the known benefits of in-
creasing levels of PA, increasing levels of work-related
physical activity, as increasing workload, has been shown
to carry an increased risk of disease incidence and pro-
gression [4—6]. Due to this, there has been a growing
interest in measuring workplace PA.

Physical activity has been shown to play an important
role in musculoskeletal disease, specifically OA [7-9].
Osteoarthritis, the most prevalent chronic joint disease,
is a global health burden and is associated with pain,
functional loss, and a reduction in quality of life. Despite
evidence suggesting that PA, as ‘exercise’, with low levels
of joint loading may benefit people with OA [10], exces-
sive mechanical loading has been identified as a risk fac-
tor for disease [11, 12]. In the general working
population, one of the major sources of repetitive and
excessive knee force often comes from daily occupa-
tional activities. Many observational studies have found
that manual occupations, such as construction work,
mining [13] and farming [14—17], have a higher preva-
lence of knee OA compared to non-manual workers.
Evidence has shown that many work-related physical ac-
tivities such as heavy lifting, prolonged kneeling and
squatting are associated with knee OA [18-20]. The
underlying mechanism is thought to be related to the
frequent exposure to knee loading, repetitive knee forces
and a loss of cartilage lubrication, thus, resulting in joint
structural damage [21-24].

Whilst work-related PA has been shown to be a risk
factor for OA, appropriate methods for the measure-
ment of workplace PA are however, unclear, and cur-
rently there are barriers to assessment. For instance,
previous occupation-based observational studies [14—17]
are often restricted to assessing occupational exposure(s)
using self-reported surveys at a single visit; which is not
reflective of long-term exposure patterns [25]. Further,
estimating lower-limb load presents new challenges be-
yond measuring workplace PA and subsequently, bio-
mechanical surrogate markers are frequently used
including load rate; defined as the rate of change in load

with respect to time [26, 27]. Knee loading can be evalu-
ated using force plates in a controlled setting [28,
29] however, this method is often restrictive. More so,
whilst other devices including inertial measurement
units (IMUSs) [30, 31] and smart-insoles [32] are available
for the measurement of dynamic movements, these
methods have not been used in real-world occupational
settings.

The use of wearable devices (e.g., smartphones and
smartwatches) to monitor aspects of rheumatology in-
cluding symptoms, and daily workplace and leisure PA
have become increasingly popular [33-37]. The use of
smartphones and smartwatches to estimate and monitor
the load rate on lower-limbs during recreational PA has
been validated previously [38]. The load rates measured
on the lower-limbs, using accelerometer data to estimate
the load rate magnitude, has been shown to be highly
correlated with the gold standard which measures
ground reaction forces using force plates [38]. Whilst
the framework used to estimate lower-limb loading has
been pilot tested previously, in a single study in a real-
world setting, and has demonstrated a sufficient degree
of accuracy [38], the generalisability of these methods
warrant further investigation.

More importantly, current methods used in
occupational-based research to dichotomise occupations
(i.e. non-manual and manual) or assign occupations to
levels of workload (i.e. low, moderate and high) are
largely based on overall physical exertion, such as step
count and metabolic equivalents (METs), or focus on
specific manual tasks i.e. predominately upper limb ac-
tivities [39—41]. Such specific manual tasks are assumed
to comprise the largest workplace PA component of the
given occupation. Lower-limb load has rarely been taken
into consideration when defining occupational levels,
perhaps due to the complexities/restrictions of assess-
ment and, very limited research exists to describe the
loading on these joints. Studies are needed to evaluate
lower-limb load and to determine whether current occu-
pational classification systems adequately map lower-
limb load to levels of workload.

In this study, our aims were: (i) to measure work-
related PA and to estimate lower-limb load using a prac-
tical, real world approach using both self-reported sur-
veys and commercially available smart devices across
different occupations in healthy working-age adults and
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(ii) to classify levels of lower-limb loading in the
workplace.

Methods

Study design

The current study was designed as a quantitative, ex-
ploratory, proof-of-concept prospective study. Partici-
pants’ work-related PA was monitored during working
hours over a period of 10 working days. The study was
approved by the Human Research Ethics Committee of
the University of Sydney (Reference no 2019/846). All
methods were performed in accordance with the rele-
vant guidelines and regulations.

Participants

A convenience sample of 24 participants were recruited
from local communities in New South Wales (Australia).
Eligible participants were aged 18 to 65 years, who were
currently working for at least 35 h/week in a single oc-
cupation and were living in the greater Sydney area. Par-
ticipants with a history of musculoskeletal disease,
neurological or systemic illness, lower-limb injury and/
or surgery during the last 12 months and/or co-morbid
health conditions that could have prevented participa-
tion in the study (e.g., unstable angina, uncontrolled
hypertension) and/or would impact on typical gait be-
haviour were excluded. Participants with a history of
using walking aids and/or orthotic devices (i.e., crutches,
knee braces and insoles) were also excluded as this could
affect their lower-limb loading outside of the occupa-
tional exposure.

In line with previous job classification criteria, occupa-
tional job titles (e.g., office worker, farmer) were
assigned to levels of workload including sedentary, light,
light manual, and heavy manual groups [4, 42]; see Ap-
pendix 1.

Study Procedure

All participants were asked to complete a daily, one-
page diary survey via REDcap to record their daily work-
ing hours (start and end of the working day) and work-
place physical activities. Participants were also asked to
carry the smart devices (smartphone and Fitbit™) only
during working hours. The samples of data recorded by
smart devices were truncated according to the working
hours reported in the daily surveys.

Self-Reported Daily Survey

The daily surveys included compulsory fields for partici-
pants to complete. Self-reported intensity and the dur-
ation of workplace physical activities were collected. The
daily survey was pre-populated with specific physical ac-
tivities that were thought to be most common across the
included occupations; these physical activities (e.g.
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walking, standing, lifting etc.) were informed by our pre-
vious work [6]. Participants also had the option to report
other physical activities beyond those pre-populated in
the survey. The start and finishing times for each work-
ing day, and work breaks, were recorded to allow the
calculation of total working time. Participants’ daily
physical activities during non-working hours (including
commute time) were not measured.

Smart Devices

PA metrics (i.e., tasks and step count) and lower-limb
load estimates, described in more detail below, could not
all be recorded using a single smart device. At the time
of this study, the standard Fitbit™ report did not provide
access to raw acceleration data which is essential for the
estimation of lower-limb load. So, a Fitbit™ smartwatch
was used to measure step count whilst a smartphone
was used to capture raw accelerometer data to estimate
lower-limb load rate.

Participants were provided with a smartwatch (Fitbit™
Versa series 2, Fitbit Inc., San Francisco, USA) and an
Android smartphone (Samsung Galaxy™ A5, Samsung
Electronics Inc., Suwon, South Korea), to carry in
addition to their primary phone for 10 working days
during working hours. Participants were asked to place
the smartphone either in their trouser pocket or alterna-
tively, strapped around their waist using a phone holder.
Participants were also asked to wear the smartwatch on
their non-dominant wrist which is a standard placement
site for PA measurement using wrist-worn accelerome-
ters as well as in compliance with the manufacturer rec-
ommendations [9, 31, 32].

Smartwatch (Fitbit™ Versa series 2)

The increase of revenues generated by smart-
watches [43] demonstrates that they are generally recog-
nised in the global wearable market as the preferential
way to monitor health and fitness levels. Fitbit™ smart-
watches feature sensors designed for PA monitoring and
have the capacity for on-board storage of approximately
7 days worth of data [44] without the need for syncing
(offloading to an offsite server). Data captured by the
Fitbit™ smartwatch was obtained via Bluetooth through
the Fitbit™ mobile app. Fitbit™ uses proprietary algo-
rithms [45] (not disclosed to the public) and provides es-
timates of step count at 60 s sampling intervals and daily
estimates of physical activity.

Smartphone (Samsung Galaxy™ A5)

The smartphone was used to monitor workplace phys-
ical activities and to capture raw accelerometer data
which could be extracted specifically for each partici-
pant’s working hours. The smartphone was pre-installed
with three smartphone applications (apps): (1) Fitbit™
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app that was used to synchronise data captured by the
smartwatch, (2) TouchTime™ [46] which is an app used
for daily tracking of activity and (3) OApp™ to monitor
and record estimates of load rates recorded by the
phone [47].

a) Monitoring PA

The smartphone was preloaded with an app called
TouchTime™, which allowed participants to record the
start and finishing time for a given activity during the
working day. Participants were encouraged to record the
time of each of their work breaks and non-wearing pe-
riods through the TouchTime™ app. In addition, within
the app, participants were given an option to select one
of eight predefined occupational activities (i.e., kneeling,
lifting, carrying, climbing, squatting, walking, standing,
and sitting) and use the TouchTime™ app to record the
starting/finishing time when they were performing the
given activity during the 10 working days. Within the
app, participants had the choice to record other tasks/
activities beyond those pre-listed and the frequency of
the given physical activities (as counts).

b) Estimating Knee Load

Continuous logging of smartphone’s accelerometer data
is not permitted by the power management restrictions
of Android devices [48]. So, we chose to preload the
smartphones with the OApp™ app which runs in the
background of the phone unnoticed by the user, to cap-
ture raw accelerometer data [47]. The OApp™ app was
developed in-house by researchers at the University of
Southampton. OApp™ uses an intermittent random
Monte-Carlo sampling of raw accelerometer data (with a
sampling frequency of 50 Hz), which permits obtaining a
statistical estimate of the load rate magnitude (load rate)
and acceleration magnitude (acceleration) [38]. The esti-
mated load rate is a surrogate measure for external im-
pact load on the lower limbs using validated formulae as
described in our previous study [47]. The infinitesimal

calculus of the load rate is defined as:
'f — g — mﬁ
S dtdt

The estimated mean load rate magnitude (kg m/s?) is
defined as:
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where a, = is the acceleration in x direction, a, = is the
acceleration in y direction, a, = is the acceleration in z
direction, n = the number of data samples at interval At
(i.e. 1/sample frequency). OApp™ uses 5 s sampling win-
dows (at 50 Hz) with 15 s intervals to estimate load rate
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as a surrogate for lower-limb load. Other load rate esti-
mates, including accumulated load rate, variance and
standard deviation were also calculated.

Statistical analysis

Descriptive statistics (means and standard deviations)
were calculated for each testing period and, for the mean
of the steps/day and mean load rate/day. Data analyses
were conducted using Python (version 3) and STATA
(version 15.0). Summary statistics for the Fitbit™ were
provided on a 24-hour cycle, whilst data from the smart-
phone could be extracted on a per working-hour basis.

Results

Participant demographics

A total of 24 healthy participants were recruited and
completed the study; see Table 1. Five, eighteen and one
study participant were classified as working in sedentary,
light manual and heavy manual occupations, respect-
ively. No participants were recruited from light
occupations.

Workplace physical activity (self-assessed via daily
surveys)

80 % (19/24) of participants completed the self-reported,
daily surveys for 10 days, 4 participants completed at
least 7 days and one participant completed 6 days; the
number of completed surveys corresponds to the num-
ber of days the respective participants stayed in the
study. The number of hours spent at work per day was
8.93 (£2.04 h), including approximately a one-hour
break (Table 2). The TouchTime™ app was provided as a
way to record PA ad-hoc but none of the participants re-
ported PA beyond completing the daily surveys.

Participants classified as working in sedentary occupa-
tions reported the longest hours of sitting (6.58+1.07 h/
day), participants of the heavy manual group reported
the longest time spent kneeling (2+0 h/day), squatting
(1.17+0.68 h/day) and standing (4.5+2.25 h/day) whilst
the light manual group reported the greatest time spent
walking (3.83+2.30 h/day), number of stairs climbed
(72+145/day) and, greatest frequency of lifting (123+
250.0/day) and carrying (129+291.7/day). In addition,
the heavy manual workload group reported lifting the
heaviest items and, carrying the heaviest goods more fre-
quently than the other two groups (Table 2).

Estimation of step count (via Fitbit)

Participant step counts were exported using Fitbit’s re-
port and then truncated to working hours in accordance
with the participants’ responses to the daily surveys.
There were missing data for two participants due to
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Table 1 Baseline characteristics of participants by workload levels

Workload Total
Sedentary Light Manual Heavy Manual (N=24)
(N=5) (N=18) (N=1)
Age (years), mean (SD) 33 (5.9 424 (12.6) 30 (0) 399 (11.9)
Gender, female n (%) 2 (40.0) 3(16.7) 0 (0) 5(20.8)
BMI (kg/mz), mean (SD) 226 (3.1) 276 (6.9) 26.9 (0) 26.6 (64)
Ethnicity
Caucasian 1 (20.0) 11 61.0) 1 (100) 13 (54.2)
Asian 3 (60.0) 6 (33.3) 0(0) 9 (37.5)
Other 1(20.0) 1(5.6) 0 (0) 2(83)
Education
High school or less 0 (0) 10 (55.5) 0 (0) 10 (41.7)
Apprenticeship/vocational school 0(0) 3(16.7) 0 (0) 3(12.5)
University degree or higher 5 (100) 5278 1 (100) 11 (45.8)
Living status
House 0(0) 11 (61.1) 0 (0) 11 (45.8)
Apartment 5 (100) 7 (38.9) 1 (100) 13 (54.2)
Relationship status
Single 1 (20.0) 5(278) 1 (100) 7 (29.2)
Married/living with a partner 4 (80.0) 12 (66.7) 0 (0) 16 (66.7)
Not disclosed 0 (0) 1 (5.5) 0 (0) 1(4.2)
Annual income (Australian dollars)
<$50,000 1(20.0) 3(167) 0(0) 4(16.7)
$50,000-$99,999 1(20.0) 10 (55.5) 0(0) 11 (45.8)
>$99,999 2 (40.0) 3(167) 0(0) 5(20.8)
Not disclosed 1 (20.0) 2(11.1) 1 (100) 4 (16.7)
Employment status
Corporate/government employee 2 (40.0) 11 (61.1) 0 (0) 13 (54.2)
Contractor or self-employed 0(0) 4(222) 1 (100) 5(20.8)
Others 3 (60.0) 3(16.7) 0(0) 6 (25.0)
Weekly working hours, mean (SD) 425 (5.3) 434 (7.3) 35.0 (0) 429 (6.9)
Years working in current job, mean (SD) 2.1 (091) 11.2 (11.3) 0.5 (0) 89 (10.6)
Age started working (years), mean (SD) 25.8 (1.9) 18.7 (4.0) 29 (0) 206 (4.9)
Exercises during workday, yes™ 1 (20.0) 3(16.7) 0 (0) 4 (16.7)
Previous joint injury at work, yes 0 (0) 4(22.2) 0 (0) 4 (16.7)
How would you classify your level of physical demand in your current job?
Sedentary’ 5 (100) 0(0) 0(0) 5 (20.8)
Light to moderate” 0(0) 14 (77.8) 1(100) 15 (62.5)
Intensive® 0 (0) 4(222) 0(0) 4(16.7)

Data presented as counts (percentage) unless stated otherwise.

Abbreviations: BMI body mass index, SD standard deviation.

1 ‘Other’ category includes mixed ethnicities.

#Positive response to: ‘In a typical working day, did you do any vigorous sports or exercise (including cycling/running to work) for more than 30 minutes?
'Sitting, desk work or very light manual tasks.

2Walking, standing, light tool or machinery work.

3 Heavy tool or machinery work, heavy manual labour.
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Table 2 Comparisons of daily work activities performed by workload levels; data acquired using daily surveys

Workload Total

Sedentary Light Manual Heavy Manual (N=24)

(N=35) (N=18) (N=1)
Working hour™ (hours) 8.0 (1.45) 9.33 (2.04) 6.65 (2.07) 8.93 (2.04)
Work break (hours) 0.93 (045) 1.05 (0.58) 0.64 (0.24) 1.01 (0.55)
Sitting (hours) 6.58 (1.07) 1.90 (1.32) 0.72 (1.09) 2.87 (2.34)
Standing (hours) 0.53 (0.56) 262 (2.18) 4.5 (2.25) 224 (2.17)
Walking (hours) 0.61 (0.48) 3.83 (2.30) 3.06 (2.27) 3.01 (243)
Kneeling (hours) 038 (0.18) 0.64 (0.43) 2 (0) 0.65 (0.45)
Squatting (hours) 0.05 (0.05) 0.51(0.38) 1.17 (0.68) 0.54 (044)
Lifting (kg) 0 (0) 7.29 (7.28) 10.75 (13.07) 742 (7.50)
Lifting (times) 0(0) 123 (250.0) 41 (40.34) 120 (245.83)
Carrying (kg) 0.5 (0) 7.38 (5.93) 14 (13.89) 7.53 (6.35)
Carrying (times) 0 (0) 129 (291.7) 7 (2.89) 124 (286.08)
Climbing (number of stairs) 43 (56) 72 (145) 5(0) 67 (136)

Data presented as means and standard deviation (SD).

All results presented here correspond to the physical activities performed during working hours only.

smartphone issues (e.g., data synching and device hand-
ling). 95 % (23/24) of participants wore the Fitbit™ smart-
watch with 17 participants completing 10 days and 5
participants completing at least 7 days. Figure 1 shows
the daily step count captured by the smartwatch for each
respective workload.

When looking at daily step count across the respective
workloads, participants of the sedentary group showed
the most stable (i.e., linear) individual trends in step
count over time; with all sedentary participants demon-
strating similar trends. The greatest between-person var-
iations and fluctuations over time were observed among
participants of the light manual group; with some

Daily Fitbit Steps (by participants)
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15000~

Steps

10000~

5000-
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. Medium
. Low

0 2 4
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6 8

Fig. 1 Description of physical activity parameters captured by Fitbit™ during working hours over 10 working days grouped by workload levels.
Each data point corresponds to the activity measure per day with each line corresponding to a single study participant. Participants are grouped
by workload: blue = sedentary, green = light manual and red = heavy manual.
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participants demonstrating at least three times more
daily steps compared to the participants of the light
manual group with the fewest steps (see Fig. 1). Whilst
based on a single study participant, we found that the
heavy manual worker had more than twice the daily
average step count compared to sedentary workers (see
Fig. 1). The heavy manual worker showed variations in
step count over time but overall, most participants’ indi-
vidual trends were largely consistent with small fluctua-
tions over time. Similar trends were observed across
each individual job title (see Appendix 2).

Estimation of Lower-limb loading

Participant-specific working hours were determined
using the responses to the daily survey, with 17 partici-
pants completing 10 days, 4 participants completing 8
days and one participant completing 6 days. Addition-
ally, there were missing Fitbit™ data for two participants.
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Over the 10-day period, we observed that lower-limb
load within occupational categories (e.g., cleaner, con-
struction worker) was not evenly distributed. Figure 2
shows the estimates of daily mean lower-limb loading
(kg*m/s3) for each study participant across the six occu-
pational categories. Loading dock personnel had the
greatest mean daily lower-limb load, followed by con-
struction workers and cleaners. In contrast, compared to
loading dock personnel/construction workers, the mean
load rate for office workers was three times smaller. The
daily mean lower-limb load for physiotherapists/occupa-
tional therapists and technicians was greater than office
workers.

When looking at the load rate within workload levels,
we observed that the intra-participant variations within
heavy and light manual groups was at least three times
greater than for sedentary occupations (i.e., office
workers).

Load rate (by job)
A B C
Cleaner Construction Worker Loading Dock Worker

250 250 250
200 200 200
150 4 150 150
100 1 100 100

50 50 50

0 é 0 o

9 10 15 12 13 14 18 16 20 23
o] (o] (D]
D E F
Office Worker Physiotherapist Technician

250 4 250 250
200 200 200
150 1 150 150
100 100 100

50 i 50 50

LB ﬁ L] | é T 0

3 8 11 25 2 4 5 6 24 21 22
(o] (D] [(2)]

Fig. 2 Estimated lower-limb load, captured by the smartphone, during working hours over 10 working days of all participants grouped by job
categories. The boxplots show the median (green line), first and third quartiles (box), min and max (whiskers) excluding outliers of the estimated
lower-limb loads (kg*m/s3) for each respective study participant grouped by job category; (A) cleaner (N = 3), (B) construction worker (N =4), (C)
loading dock worker (N = 3), (D) office worker (N =4), (E) physiotherapist/occupational therapist (N=5) and (F) technician (N =2)
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Figure 3 shows the agglomerated lower-limb load
(kg*m/s3) data for each study participant across levels of
workload (i.e., sedentary, light manual and heavy man-
ual). The dispersion in lower-limb load was more signifi-
cant for some workloads than others. The outliers
shown here indicate load rates that far exceeded the me-
dian and standard deviation values; these were typically
ten times greater than the median lower-limb load for
each participant.

Discussion

This study is the first to monitor and compare work-
place PA in a real-world setting and to estimate loading
of the lower limbs across different occupations using
self-reported surveys and smart devices. Our key find-
ings were that monitoring of PA using smart devices
provides insights, further to self-reported assessments,
that could help evaluate load variations on the lower
limbs. Most participants classified as light manual, using
pre-existing definitions, were found to demonstrate a
range of loads that were similar to a single participant in
heavy manual work. Rare events of extremes in lower-
limb loading demonstrated by all participants poses the
question of whether the frequency and intensity of such
extreme lower-limb loads contributes to OA disease.
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Our key findings were that participants classified,
using pre-existing definitions, as working in light manual
jobs, including physiotherapists and technicians, re-
ported more intensive lower limb activity such as fre-
quency of lifting and number of stairs climbed
compared to sedentary and heavy manual occupations.
Further, participants of this group showed the greatest
variation in step count and load rate patterns over time
compared to other groups. This would suggest that our
estimates of lower-limb load and step count are sensitive
to such activities involving the lower limbs. Furthermore,
whilst limited to a single study participant, a heavy man-
ual worker (i.e., construction labourers) had a greater
step count and mean daily load rate compared to light
manual and sedentary occupations. More so, the heavy
manual worker reported greater time spent performing
manual tasks (ie., lifting) than light manual and seden-
tary occupations, respectively.

Our study improves the current understanding of
workplace PA by identifying patterns of routinely per-
formed physical activities and estimated lower-limb
loading. These data suggest that current methods used
to assign occupations to levels of activity, which are
mostly informed by whole-body activity measures and/
or assumed work tasks, may not be applicable for large
scale application given the vast within-occupation varia-
tions in workplace activities and, the levels used may not
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be reflective of loading of the lower limbs. For instance,
the greatest variation in daily mean load rate occurred
within participants working in light manual occupations
whilst the behaviours of workers in sedentary occupa-
tions were more stable over time. These data also go
some way to describing patterns of PA which may help
to identify the underlying pathologies of knee OA. For
instance, it is highly contested as to whether OA is
driven solely by duration, frequency or intensity of
lower-limb loading; it is likely to be a combination of
these factors with data supporting that both intensity
and duration of daily-living PA influence risk of disabil-
ity in OA [49]. Construction work has been routinely
shown to carry an increased risk of knee OA due to an
excessive level of knee loading. Similarly to the light
manual group, we showed in a single construction
worker that loading of the lower limbs fluctuated con-
siderably on a daily basis; thus, it could be these harsh
fluctuations in lower limb loading across both light and
heavy manual occupations that may be a driving factor
for OA. Further research is needed to take into account
measures of lower limb movements. The previously vali-
dated load rate magnitude algorithm [47], which was
built into the OApp™, has been tested beyond previous
studies and has shown a great potential to monitor lower
limb loading in a real-world environment using com-
mercially available smart devices.

There are, however, many challenges to using smart
devices to monitor workplace activity in a real-world set-
ting. Obstacles for use include workplace restrictions,
hazardous working environments and/or interference
with existing professional equipment. Our study found
that compliance varied among occupational groups as
demonstrated by the varying completion rates of the 10-
day wearing time. We found that the single construction
worker often failed to wear the smart device as
instructed for the 10-day period, particularly the smart-
phone. Reasons for poor compliance, as reported by the
study participants included workplace restrictions or the
inconvenience caused by wearing extra devices during
heavy physical work. In addition, the unstable/irregular
working schedules and impact from weather or other
environmental changes were also potential contributors.
In our study, levels of compliance for wearing the Fitbit™
and/or smartphone were comparable to previous studies
of wearable devices in participants with knee OA [34].

Technical issues are also potential barriers to data cap-
ture, which need to be considered to facilitate the wider
use of smart devices in future practice. In our study, the
smartphones were used as secondary devices which led
to issues uploading data (Fitbit™ and OApp™ app) and
devices entering ‘doze mode’ during extended periods of
inactivity [50] (e.g. participants not interacting regularly
with the device). Despite all participants reporting use of

Page 9 of 11

the smartphone for the duration of the time spent in the
study, load rate estimates were missing for 4 study par-
ticipants and 10 participants had load rate estimates
missing for 1 to 4 days. This resulted in a total of 20 par-
ticipants with at least 6 days of data for the analyses.

Participants filled the daily survey required for the
study but did not make use of the timer (Touchtime™
app) to record activities during work, which indicates
that ad-hoc self-reported assessments used to report PA
might not apply in real life. The start and end of work-
ing hours could only be determined by self-reported as-
sessment (as opposed to using AI/ML techniques) and
so this study demonstrates that self-reported surveys
and smart devices cannot be used in isolation in order
to monitor workplace PA and estimate lower-limb
loading.

There are several limitations to this study which re-
quire careful consideration. Firstly, our study population
was small (N =24). As this was an explanatory, real-
world setting, proof-of-concept study, a standard sample
size calculation was not required. By taking a conveni-
ence sample approach, we were able to recruit partici-
pants across 3 of the 4 workload levels (sedentary, light
manual and heavy manual) [4]. Ideally, we would have
recruited more participants from ‘light’ and ‘heavy man-
ual’ groups in order to facilitate a more robust assess-
ment of between-participant comparison. As our
findings for heavy manual work are based on a single
study participant, our results should be interpreted with
caution and require further validation in a larger study
sample. Our ability to recruit only a single study partici-
pant from heavy manual occupations is an important
finding in itself. It demonstrates the real-world issues of
recruiting for wearable-based studies, from a healthy
population, and it highlights that it may be more difficult
to recruit from certain occupational sectors. This should
help to inform the recruitment strategies of future
wearable-based occupational studies as efforts may need
to be targeted and localised to specific working groups.
The study has a relatively short follow-up period how-
ever, we were able to capture shift-patterns and those
that were likely to fluctuate over a 2-week period. We
do, however, acknowledge that some of the included job
titles may work to a shift pattern beyond the two weeks
measured here. A further limitation of this study was
that we did not correlate the level of physical activity
(e.g., step count) as measured by wearable devices to
patient-reported questionnaires.

Whilst it has been reported that the use of force plates
in a gait lab setting is the most accurate method of de-
termining lower limb loading, the limitations of this ap-
proach are well known and are restricted to a non-real
world setting. Our approach to determining estimates of
lower-limb loading is more practical and was conducted
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in real world, occupational settings. We asked the study
participants to carry a secondary phone, rather than
loading the device applications onto their primary
phone. The limitations to using a secondary device are
well known [50]. However, this was considered the most
appropriate way of measuring physical activity measures
during working hours. Due to power management of the
smartphone [51] it is not possible to continuously record
raw sensor data and so, we conducted a sample-based
analysis. Finally, we asked patients to self-report the start
and end of each working day to allow estimation of
working hours; this is likely to be subject to recall bias,
however, this was the most feasible and commonly used
approach to acquire such data.

Conclusions

Our findings suggest that smart devices are feasible for
monitoring workplace physical activity and for estimat-
ing lower limb loading in most occupational settings.
Our observations of step count with new estimates of
lower-limb load during work were largely consistent
with pre-defined levels of physical demand. There were
large interpersonal variations in light manual and heavy
manual workers and also large fluctuations in their
workload/shift patterns. We present a new approach to
monitoring workplace physical activity and estimating
lower-limb load utilising daily survey data and smart de-
vices which could be applied to future occupational
studies.
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