
RESEARCH ARTICLE Open Access

Development of fibrocartilage layers in the
anterior cruciate ligament insertion in
rabbits
Hirotaka Mutsuzaki1*, Hiromi Nakajima2, Maika Someji2 and Masataka Sakane3

Abstract

Background: A detailed evaluation focusing on the fibrocartilage layers in the anterior cruciate ligament (ACL)
insertion is necessary to consider regeneration of the insertion. This study examined the development of the
fibrocartilage layers in the ACL tibial insertion in rabbits by quantitative morphometric evaluations based on
histological and immunohistochemical analyses.

Methods: Male Japanese white rabbits were used because of their history of use for histomorphometric analyses of
the ACL insertion and to eliminate the influence of female hormones on the ACL. Six animals were euthanized at
each age (1 day and 1, 2, 4, 6, 8, 12, and 24 weeks); in total, 48 animals were used. Proliferation rate, apoptosis rate,
Sox9-positive rate, and chondrocyte number were evaluated. Safranin O-stained glycosaminoglycan (GAG) areas,
tidemark length, ACL insertion width, and ACL length were also evaluated. All parameters were compared with
those at age 24 weeks of age.

Results: High levels of chondrocyte proliferation and Sox9 expression continued until 4 and 8weeks of age, respectively,
and then gradually decreased. Chondrocyte apoptosis increased up to 8weeks. The chondrocyte number, ACL insertion
width, ACL length, safranin O-stained GAG areas, and tidemark length gradually increased up to 12weeks.

Conclusion: Chondrocytes that displayed chondrocyte proliferation and Sox9 expression increased until 12 weeks of age,
in accordance with development of the ACL length and its insertion width. The GAG production and tidemark length
also increased until 12 weeks of age. The development of fibrocartilage layers in the ACL insertion was complete at 12
weeks of age.
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Background
The anterior cruciate ligament (ACL) insertions at the
femur and the tibia have four transitional tissue layers:
ligament, unmineralized fibrocartilage, mineralized fibro-
cartilage, and bone (direct-type insertion) [1]. The vari-
ous degrees of stiffness of these layers reduce the stress
concentration at the insertion site [1]. However, only fi-
brous tissue that was mechanically inferior was noted
between the grafted tendon–bone interface after ACL
reconstruction using a soft tissue graft (indirect-type in-
sertion) [2–4]. On the other hand, qualitative evaluations

revealed an anatomical difference in the ACL insertion
structure during growth over time [5, 6]. We consider
that optimal treatment at the ACL insertion involves
anatomical imitation and/or regeneration of the normal
structure. Moreover, specific treatments that approach
the normal structure of the ACL insertion at each age
are necessary. Therefore, an understanding of the forma-
tion process and anatomical structural differences in
growth of the fibrocartilage layers (unmineralized and
mineralized fibrocartilage) in the ACL insertion is neces-
sary when considering the most appropriate treatment
strategy based on age and the development of new treat-
ment methods for regeneration of the tendon–bone
interface.
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We focused on the fibrocartilage layers as a load trans-
mitter because glycosaminoglycans (GAGs) in the fibro-
cartilage layers provide tissue elasticity [7]. The GAGs
provide resistance to tensile, shear, and compressive
stresses and are thus important for load transmission [1,
7]. In our previous reports, we showed that mechanical
unloading and knee immobilization increased chondro-
cyte apoptosis, decreased chondrocyte proliferation, and
decreased the GAGs in the fibrocartilage layers in the
patellar tendon insertion and ACL insertion in rabbits
[8, 9]. Conversely, over load via an ACL partial tear and
gradual elongation using external fixation decreased
chondrocyte apoptosis, increased chondrocyte prolifera-
tion, and increased the GAGs in the fibrocartilage layers
in the patellar tendon insertion and ACL insertion in
rabbits [10, 11]. Therefore, we consider that chondrocyte
apoptosis, chondrocyte proliferation, and GAGs can ef-
fectively reflect differences in the mechanical environ-
ment at the insertion site. Moreover, sex-determining
region Y box 9 (Sox9) directly regulates the type-II colla-
gen gene and is a master regulator of chondrogenesis by
promoting proliferation and differentiation of mesenchy-
mal stem cells into chondrocytes [12–14].
We considered that a more detailed quantitative evalu-

ation using these parameters (i.e., chondrocyte apoptosis,
chondrocyte proliferation, Sox9, and GAGs) when focus-
ing on the fibrocartilage layers in the ACL insertion is
crucial to understanding the formation process and the
anatomical structural differences of the fibrocartilage
layers during growth and healing of the ACL insertion.
The purpose of this study was to evaluate the develop-

ment of the fibrocartilage layers in the ACL tibial insertion
in rabbits by quantitative morphometry evaluations based
on histological and immunohistochemical analyses.

Methods
Animal preparation
This laboratory-based animal study used a judgement
sampling technique. Forty-eight male Japanese white
rabbits were used because of their history of use for his-
tomorphometric analyses of the ACL insertion and to
eliminate the influence of female hormones on the ACL
[8–11, 15]. Because the skeletal growth of rabbits is
complete at 6 months [16], we set the evaluation period
at 24 weeks of age. These rabbits were purchased from
Japan SLC, Inc. (Hamamatsu, Japan) and Hamada farm
(Miho, Japan). The rabbits were maintained in accord-
ance with the guidelines of the Ethical Committee of
Ibaraki Prefectural University of Health Sciences and
Ibaraki University, and the National Institutes of Health
Guidelines for the Care and Use of Laboratory Animals
(NIH Pub. No. 86–23 Rev. 1985). Six animals at each
age (1 day, 1, 2, 4, 6, 8, 12, and 24 weeks) were eutha-
nized by over dose intravenous barbiturate injection

(200 mg/kg, Somnopentyl®, Kyoritsu Seiyaku Corpor-
ation, Tokyo, Japan). Because this study was an evalu-
ation of the development of fibrocartilage layers in ACL
tibial insertions, it could not be considered an in vitro
experiment. The animal species to be studied was deter-
mined based on previous reports [8–11]. Moreover, it is
considered difficult to prepare tissue specimens using
animals smaller than rabbits. Therefore, we chose rabbits
for this study.

Histomorphological analysis
Knees from the animals were fixed in 10%
neutral-buffered formalin for 1 week. After fixation, the
specimens from rabbits 2–24 weeks of age were decalci-
fied in 10% ethylenediaminetetraacetic acid (pH 7.4) for
7–12 weeks and then embedded in paraffin. The speci-
mens from rabbits 1 day and 1 weeks of age could be
sliced without decalcification. The specimens were sliced
at 5-μm thickness in the center of the ACL tibial insertion
site. The slices were stained with hematoxylin-eosin, and
safranin O to assess the histomorphology and GAG con-
tents [8–11]. We also used proliferating cell nuclear anti-
gen (PCNA) staining to detect proliferating cells [8–11]
(Fig. 1a), terminal deoxynucleotidyl transferase-mediated
deoxyuridine triphosphate-biotin nick-end labeling
(TUNEL) staining to detect apoptotic cells [8–11] (Fig.
1b), and Sox9 staining to evaluate the developmental dif-
ferentiation of chondrocytes (Fig. 1c).
PCNA immunostaining was carried out with a Histo-

fine® SAB-PO(M) Kit (Nichirei Biosciences Inc., Tokyo,
Japan) according to the manufacturers’ instructions.
Briefly, sections were deparaffinized, rinsed in
phosphate-buffered saline (PBS) for 5 min, and
immersed in 3% hydrogen peroxide (H2O2) in methanol
for 10 min to block endogenous peroxidase activity.
After rinsing in PBS for 5 min, the sections were blocked
in 10% normal rabbit serum at 25 °C for 10 min, and in-
cubated with an anti-PCNA monoclonal antibody
(PC-10; Code No. M0879; Dako, Glostrup, Denmark) at
1:100 dilution for 12 h at 4 °C. Antibody Diluent (Code
No. S0809; Dako) was used instead of a primary anti-
body for the negative controls [8–11].
TUNEL staining was performed using an Apoptag®

Plus Peroxidase In Situ Apoptosis Detection Kit (Merck
Millipore, Billerica, MA, USA) according to the manu-
facturers’ instructions. TUNEL-positive nuclei of chon-
drocytes were stained dark brown, and TUNEL-negative
nuclei were stained blue [8–11].
Sox9 immunohistochemical staining was performed

with a Histofine® SAB-PO (R) Kit (Nichirei Biosciences
Inc.) and a Rabbit-To-Rabbit Blocking Reagent (ScyTek
Laboratories Inc., Logan, UT, USA) according to the
manufacturers’ instructions. Deparaffinized sections
were rinsed twice with PBS for 3 min each and
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immersed in 3% H2O2 in methanol for 10 min to block
endogenous peroxidase activity. After three rinses in
PBS for 5 min each, the sections were blocked with 10%
normal goat serum at room temperature for 10 min, in-
cubated with a Rabbit-To-Rabbit Blocking Reagent at
room temperature for 30 min, and washed four times in
PBS for 5 min each. The sections were then incubated
with an anti-Sox9 rabbit polyclonal antibody (Bioworld
Technology Inc., Louis Park, MN, USA) at 1:100 dilution
for 24 h at 4 °C. The immunoreaction product was devel-
oped in diaminobenzidine, and the sections were coun-
terstained with Mayer’s hematoxylin for 30 s.
Sox9-positive nuclei were stained dark brown and
Sox9-negative nuclei were stained blue.
Histomorphometric analyses were performed using

similar methods to those in our previous study [8–11].
The sections were examined using a BX-51 light micro-
scope (Olympus Optical Co. Ltd., Tokyo, Japan). The
GAG areas stained red by safranin O were evaluated in
the fibrocartilage layers in the ACL tibial insertion
(Fig. 2). In the specimens from rabbits 1 day and 1 and
2 weeks of age, we defined the fibrocartilage layers in the
ACL tibial insertion as those having lower-density stain-
ing of cartilaginous tissue than articular cartilage by saf-
ranin O with round cells, and between the ligament and
hyaline cartilage area continuous with articular cartilage.
In the specimens from rabbits ≥4 weeks of age, we de-
fined the fibrocartilage layers in the ACL tibial insertion
as the cartilaginous tissue with round cells between the
ligament and bone [9, 10]. The length of the tidemark in
the ACL tibial insertion was measured as the sum-total
length that stained with hematoxylin-eosin. The histo-
logical ACL length was defined as the distance between
the anterior attachment of the femur and the posterior
attachment of the tibia [6]. The width of the ACL tibial
insertion was defined as the anterior-to-posterior dis-
tance of the ACL tibial attachment. Mac Scope software
(Mitani Co., Fukii, Japan) was used to determine the
total numbers of chondrocytes and the numbers of
TUNEL-positive, PCNA-positive, and Sox9-positive
chondrocytes in the safranin O-stained GAG areas in

the fibrocartilage layers in the ACL tibial insertion. Each
red-stained GAG area and tidemark length was divided
by the width of the ACL insertion to define the average
thickness of the red-stained GAG areas and the percent-
age of the tidemark length relative to the ACL insertion
width, respectively. The TUNEL-, PCNA-, and
Sox9-positive rates were calculated based on the total
numbers of chondrocytes in the safranin O-stained
GAG areas in the fibrocartilage layers.

Statistical analysis
For each parameter, normality of the data was tested
using the Shapiro-Wilk normality test. The
time-dependent histological changes were evaluated by
one-way analysis of variance (ANOVA) when the as-
sumption of normality of all variables for each parameter
was accepted. Factors determined to show significant
differences by ANOVA were further evaluated by Dun-
nett’s test. When the assumption of normality failed for
all variables in each parameter, the Kruskal-Wallis test
and Bonferroni adjustment technique were applied. All
parameters were compared with those at 24 weeks. The
level of significance was set at 5%. All analyses were per-
formed with IBM SPSS Statistics version 24.0 (IBM
Corp., Armonk, NY, USA).
According to a previous study [9], a power calculation

was performed with a confidence level of 95% (α = 0.05)
and power (1 – β) of 80% using the POWER Procedure
in SAS software (SAS Institute, Cary, NC, USA). Calcu-
lation of the smallest sample size that produced a signifi-
cant difference yielded an estimated sample size of five
to six specimens per age group. We enrolled six speci-
mens per age group to reduce the number of animals
used.

Results
All 48 rabbits were used for the evaluations. The
Shapiro-Wilk test showed that the numbers of chondro-
cytes, thicknesses of safranin O-stained GAG areas, and
width of the ACL insertion were normality distributed.

a b c

100µm 100µm 100µm

Fig. 1 Stained histological sections. a PCNA staining (400×). PCNA-positive chondrocytes are brown (arrows). b TUNEL staining (400×). TUNEL-
positive chondrocytes are brown (arrows). Sox9 staining (400×). c Sox9-positive chondrocytes are brown (arrows). PCNA, proliferating cell nuclear
antigen; TUNEL: terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick-end labeling; Sox9: sex-determining region
Y box 9
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The data for the other parameters were not normality
distributed.

Chondrocyte proliferation rate
The chondrocyte proliferation rate was determined by
the numbers of PCNA-positive chondrocytes (Fig. 3).
The chondrocyte proliferation rates at ages 1 day (p <
0.001), 1 week (p < 0.001), 2 weeks (p = 0.011), and 4
weeks (p = 0.004) were significantly higher than that at
age 24 weeks. There were no significant differences be-
tween the chondrocyte proliferation rates at ages 6
weeks (p = 0.103), 8 weeks (p = 0.138), and 12 weeks (p =

0.757) and that at age 24 weeks (effect size: r = 4.694,
power: 1.000).

Chondrocyte apoptosis rate
The chondrocyte apoptosis rate was determined by the
numbers of TUNEL-positive chondrocytes (Fig. 4). The
chondrocyte apoptosis rates at ages 1 day (p = 0.039), 2
weeks (p < 0.001), 4 weeks (p = 0.013), 6 weeks (p =
0.034), and 8 weeks (p = 0.005) were significantly higher
than that at age 24 weeks. There were no significant dif-
ferences between the chondrocyte apoptosis rates at ages
1 week (p = 0.132) and 12 weeks (p = 0.984) and that at
age 24 weeks (effect size: r = 3.754, power: 0.980).

a b

c d

e f

g h

Fig. 2 Representative histological sections of anterior cruciate ligament tibial insertions at each age stained with safranin O. The interfacial
fibrocartilage layers (black arrows) were evaluated. Images for each rabbit age are shown: (a) 1 day (100×). (b) 1 week (40×). (c) 2 weeks (40×). (d)
4 weeks (40×). (e) 6 weeks (40×). (f) 8 weeks (40×). (g) 12 weeks (40×). (h) 24 weeks (40×). ACL, anterior cruciate ligament
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Developmental differentiation of chondrocytes
The developmental differentiation of chondrocytes was
determined by the numbers of Sox9-positive chondro-
cytes (Fig. 5). The Sox9-positive chondrocyte rates at
ages 1 day (p < 0.001), 1 week (p < 0.001), 2 weeks (p <
0.001), 4 weeks (p = 0.006), and 8 weeks (p = 0.006) were
significantly higher than that at age 24 weeks. There was
no significant difference between the Sox9-positive
chondrocyte rate at age 6 weeks (p = 0.053) and 12 weeks
(p = 0.578) and that at age 24 weeks (effect size: ηp

2 =
4.579, power: 1.000).

Numbers of chondrocytes in the ACL insertion
The numbers of chondrocytes in the ACL insertion are
shown in Fig. 6. The numbers of chondrocytes at ages 1
day (p < 0.001), 1 week (p < 0.001), 2 weeks (p < 0.001), 4

weeks (p < 0.001), and 8 weeks (p = 0.002) were signifi-
cantly lower than that at age 24 weeks. There were no
significant differences between the number of chondro-
cytes at ages 6 weeks (p = 0.076) and 12 weeks (p = 0.390)
and that at age 24 weeks (effect size: ηp

2 = 0.761, power:
0.991).

Thickness of safranin O-stained GAG areas
The thicknesses of the safranin O-stained GAG areas
are shown in Fig. 7. The thicknesses at ages 1 day (p <
0.001), 1 week (p < 0.001), 2 weeks (p < 0.001), 4 weeks
(p < 0.001), 6 weeks (p < 0.001), and 8 weeks (p = 0.001)
were significantly smaller than that at age 24 weeks.
There was no significant difference between the thick-
ness at age 12 weeks (p = 0.255) and that at age 24 weeks
(effect size: ηp

2 = 0.711, power: 1.000).

Age (weeks)

0

20

40

60

80

100

0 5 10 15 20 25C
h

o
n

d
ro

cy
te

 p
ro

lif
er

at
io

n
 r

at
e

(%
)

p < 0.001
p < 0.001

p = 0.011
p = 0.004

Fig. 3 Chondrocyte proliferation rates. *p < 0.05 versus age 24 weeks (n = 6)
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Fig. 4 Chondrocyte apoptosis rates. *p < 0.05 versus age 24 weeks (n = 6)
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Percentages of tidemark length relative to ACL insertion
width
The percentages of the tidemark length relative to the
ACL insertion width are shown in Fig. 8. The percent-
ages at ages 1 day (p < 0.001), 1 week (p < 0.001), 2 weeks
(p < 0.001), 4 weeks (p < 0.001), and 6 weeks (p = 0.001)
were significantly lower than that at age 24 weeks. There
was no significant difference between the percentages at
ages 8 weeks (p = 0.208) and 12 weeks (p = 0.301) and
that at age 24 weeks (effect size: r = 6.170, power: 1.000).

Length of ACL
The ACL lengths are shown in Fig. 9. The lengths at
ages 1 day (p < 0.001), 1 week (p < 0.001), and 2 weeks (p
= 0.005), were significantly smaller than that at age 24
weeks. There were no significant differences between the

lengths at ages 4 weeks (p = 0.070), 6 weeks (p = 0.266),
8 weeks (p = 0.853), and 12 weeks (p = 0.934) and that at
age 24 weeks (effect size: r = 5.811, power: 1.000).

Width of ACL insertion
The ACL insertion widths are shown in Fig. 10. The
widths at ages 1 day (p < 0.001), 1 week (p < 0.001), 2
weeks (p < 0.001), 4 weeks (p = 0.005), 6 weeks (p < 0.001),
and 8 weeks (p < 0.001) were significantly smaller than
that at age 24 weeks. There was no significant difference
between the width at age 12 weeks (p = 0.393) and that at
age 24 weeks (effect size: ηp

2 = 0.721, power: 1.000).

Discussion
High levels of chondrocyte proliferation and Sox9 ex-
pression in the ACL tibial insertion continued until 4
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and 8 weeks of age, respectively, and then gradually de-
creased. Although the increased chondrocyte apoptosis
rates continued until 8 weeks, the chondrocyte numbers
gradually increased up to age 12 weeks. The ACL length
and insertion width gradually increased until ages 4 and
12 weeks, respectively. The safranin O-stained GAG
areas gradually enlarged up to age 12 weeks, and the
tidemark gradually widened up to age 8 weeks.
Until 12 weeks of age, the number of chondrocyte in

the ACL tibial insertion gradually increased, based on
the increased chondrocyte proliferation and Sox9 ex-
pression. This result supports previous qualitative find-
ings reported by Nawata et al. [6], who detected that
PCNA-stained chondrocytes were detected at the ACL
tibial insertion until 1 month of age in rats [6]. In the
present study, increased chondrocyte apoptosis was

observed until 8 weeks of age. Chondrocyte proliferation
may outpace the chondrocyte apoptosis in the growth
period. Therefore, the number of chondrocytes gradually
increased up to age 12 weeks. Given the similarities with
the growth plate, the early stages of ACL insertion devel-
opment may involve control of chondrocyte prolifera-
tion, followed by apoptosis [14].
Until 4 to 12 weeks of age, the ACL length, the ACL

tibial insertion width, the GAG production and the tide-
mark length increased in the ACL tibial insertion. The
increase in safranin O-stained GAG areas might have
been due to mechanical stresses and an increased total
number of chondrocytes. Moreover, the tidemark, which
is the mechanical boundary between the unmineralized
and mineralized fibrocartilage zones, is important to re-
duce damage to soft tissues during joint movement [1].
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Mechanical stresses may be necessary for formation of
the tidemark. In accordance with gait and skeletal
growth, the ACL undergoes tensile, shear, and compres-
sive stresses. Such mechanical stresses is important for
development of the fibrocartilage layers in the ACL in-
sertion [17, 18]. GAGs, which provide tissue hydration
and elasticity in the ligament insertion, also resist
mechanical stresses [1]; therefore increased GAG pro-
duction may be associated with increased mechanical
stresses at the ACL insertion site. Gao et al. [19] re-
ported that the medial collateral ligament in the rat
was attached to the hyaline cartilage that initially pre-
ceded the bone rudiment. The hyaline cartilage was
then eroded, but fibrocartilage appeared in the liga-
ment insertion because of metaplasia of the fibro-
blasts. They suggested that the metaplasia was
probably driven by mechanical stimuli associated with

movement of the ligament relative to the bone at the
insertion site.
The tendon–bone interface is unable to regenerate a

direct-type insertion, and instead forms an indirect-type
insertion with inferior biomechanical properties that can
potentially lead to osteoarthritis [2–4, 20–22]. Based on
our results, increased chondrocytes at the tendon–bone
interface during the early phase after ACL reconstruc-
tion may be important for the formation of the fibrocar-
tilage layers. Previous reports have described good
outcomes after administration of growth factors (e.g.,
bone morphogenetic protein [23], fibroblast growth fac-
tor [24], and transforming growth factor-β [25]) and
transplantation of multipotent cells and tissues that en-
courage improved tendon–bone healing with the fibro-
cartilage layers [26, 27]. Moreover, appropriate
mechanical stresses at the tendon–bone interface and
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the loading period after ACL reconstruction can be import-
ant factors leading to maturation and completion of the
ACL insertion with the fibrocartilage layers and tidemark.
Anatomical structural differences accompanying growth of
the fibrocartilage layers in the ACL insertion were also
clarified in the present study. Hence, an appropriate treat-
ment strategy based on age could be considered.
The limitations of this study are as follows. Although

we performed quantitative analyses up to 6months of
age (i.e., when the skeletal growth of rabbits is complete
[16]), evaluations after 6 months may be also necessary
when examining the fibrocartilage layer after the growth
period. In future studies, mechanical analyses will be ne-
cessary to clarify the association with mechanical
stresses. Because only the phenotype was investigated in
this study, clarification of the complex network of signal-
ing systems and pathways is needed.

Conclusions
Until the studied rabbits reached 12 weeks of age, chon-
drocytes that exhibited chondrocyte proliferation and
Sox9 expression increased in accordance with the gradual
development of the ACL length and insertion width. The
GAG production and tidemark length also increased until
12 weeks of age. The development of fibrocartilage layers
in the ACL insertion was completed at 12 weeks of age.
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