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Abstract

Background: Surface electromyographic (EMG) recordings collected during the performance of functional evaluations
allow clinicians to assess aberrant patterns of muscle activity associated with musculoskeletal disorders. This assessment
is typically achieved via visual inspection of the surface EMG data. This approach is time-consuming and leads to
accurate results only when the assessment is carried out by an EMG expert.

Methods: A set of algorithms was developed to automatically evaluate aberrant patterns of muscle activity. EMG
recordings collected during the performance of functional evaluations in 62 subjects (22 to 61 years old) were used to
develop and characterize the algorithms. Clinical scores were generated via visual inspection by an EMG expert using
an ordinal scale capturing the severity of aberrant patterns of muscle activity. The algorithms were used in a case study
(i.e. the evaluation of a subject with persistent back pain following instrumented lumbar fusion who underwent lumbar
hardware removal) to assess the clinical suitability of the proposed technique.

Results: The EMG-based algorithms produced accurate estimates of the clinical scores. Results were primarily obtained
using a linear regression approach. However, when the results were not satisfactory, a regression implementation of a
Random Forest was utilized, and the results compared with those obtained using a linear regression approach. The
root-mean-square error of the clinical score estimates produced by the algorithms was a small fraction of the ordinal
scale used to rate the severity of the aberrant patterns of muscle activity. Regression coefficients and associated 95%
confidence intervals showed that the EMG-based estimates fit well the clinical scores generated by the EMG expert.
When applied to the clinical case study, the algorithms appeared to capture the characteristics of the muscle activity
patterns associated with persistent back pain following instrumented lumbar fusion.

Conclusions: The proposed approach relies on EMG-based measures to generate accurate estimates of the severity of
aberrant patterns of muscle activity. The results obtained in the case study suggest that the proposed technique is
suitable to derive clinically-relevant information from EMG data collected during functional evaluations.
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Background

Nearly 50% of people living in Western countries ex-
perience a musculoskeletal disorder at some point in
time during their adult life and the majority of these
individuals report related long-term problems [1-3].
Musculoskeletal disorders are typically associated
with acute and chronic pain [4, 5]. Low back pain and
neck-shoulder pain are among the most common
complaints associated with musculoskeletal disorders
[6-10]. These conditions are often accompanied by
motor dysfunction, i.e. aberrant patterns of muscle activity
that lead to non-physiological postures and trajectories of
movements as well as non-physiological loads on joints
and ligaments [11-14]. The development of clinical inter-
vention plans often relies on observations gathered during
the performance of functional evaluations consisting
of batteries of motor tasks that mimic activities of
daily living (e.g. walking, lifting a box). During these
evaluations, clinicians collect biomechanical and elec-
tromyographic (EMG) data to assess the severity of
motor dysfunction [11-14].

Gathering biomechanical data allows clinicians to
identify range of motion limitations, the inability of
subjects to produce the desired force output, and aber-
rant movement patterns [15, 16]. In turn, EMG record-
ings allow clinicians to detect the root causes of
non-physiological postures and movement trajectories
such as abnormal readings at rest, muscle hyperactivity,
muscle spasms, patterns of compensatory activity of
synergistic and/or antagonistic muscles, lack of inhibition
of muscle activity, and other aberrant muscle activation
patterns [17-23]. Whereas the use of biomechanical mea-
sures based on a quantitative analysis of the data is rela-
tively common [15, 16], the analysis of EMG data is
typically carried out via visual inspection of the EMG re-
cordings and the use of ordinal scales to rate the severity
of abnormally high levels of muscle activity, the pres-
ence/absence and severity of muscle spasms, and the
observation of non-physiological patterns of recruit-
ment and de-recruitment of the muscles’ motor units
as reflected by the amplitude modulation of the surface
EMG recordings [24].

The observations gathered by EMG experts vary in
complexity according to the task performed by the
subject. When subjects are observed in static condi-
tions (e.g. while sitting on a chair or standing still),
EMG experts would first assess if the general level of
EMG activity is physiological or if it reflects a non-
physiological behavior (e.g. muscle hyperactivity) [25,
26]. This observation could be translated into a quanti-
tative measure because the level of EMG activity is as-
sociated with the amplitude of the EMG recordings
(e.g. the root-mean-square value of the EMG data). A
second observation of significant relevance in the
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analysis of EMG recordings performed in static condi-
tions is the presence/absence and severity of muscle
spasms [27, 28]. Muscle spasms are unexpected bursts
of muscle activity associated with the recruitment of
individual motor units, a pool of motor units that are
recruited quasi-periodically in a synchronized manner,
or the sustained activity of a pool of motor units [27,
28]. Quantitative measures to capture these behaviors
rely on EMG data features associated with the charac-
teristics of the recruitment of motor units during
muscle spasms, including data features derived in the
time and frequency domains [27, 28].

More complex observations are gathered via visual
inspection of the surface EMG data collected in dy-
namic conditions. EMG experts assess the characteris-
tics of the recruitment and de-recruitment of the
muscles’ motor units as reflected by the amplitude
modulation of the EMG recordings [29, 30]. They de-
termine the rate of increase and decrease in force pro-
duction in relation to characteristics of the task
performed by the subject such as the range of motion
spanned during the task. They identify instances
marked by the lack of inhibition of muscle activity (e.g.
as in the flexion-relaxation phenomenon [31-33]) that
have been associated with musculoskeletal disorders
and related pain.

This study aimed to test the hypothesis that clinical
scores generated by an EMG expert via visual inspec-
tion of the surface EMG recordings collected during a
functional evaluation can be accurately estimated via
automated analysis of the EMG data using ad hoc algo-
rithms. This is relevant because the analysis of EMG re-
cordings via their visual inspection is time-consuming,
a factor that significantly hinders the use of EMG re-
cordings in the clinic. To address this problem, algo-
rithms were developed using an existing database of
surface EMG recordings collected during functional
evaluations performed using an approach referred to as
the Electrodiagnostic Functional Assessment (EFA)
[34-36]. The complexity of the algorithms varied ac-
cording to the complexity of the clinical observations
performed via visual inspection of the EMG recordings.
The algorithms ranged in complexity from a simple model
relying on a single EMG data feature to a set of EMG data
features as input to a regression implementation of a Ran-
dom Forest [37] (i.e. a collection of decision trees).

The algorithms were then applied to EMG data col-
lected to evaluate a subject with persistent back pain
after instrumented lumbar fusion who underwent hard-
ware removal [38]. Hardware removal in subjects who
have undergone instrumented lumbar fusion and ex-
perience back pain is a controversial elective treatment
[38—40]. Subjects with recurrent back pain after instru-
mented lumbar fusion are evaluated by clinical exam,
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palpation of the lumbar spine, radiographic tests - in-
cluding lumbar x-rays with flexion/extension views -,
post-operative MRI, myelogram CT scan, bone scans,
and diagnostic injections consisting of lumbar hardware
blocks, selective root blocks, and sacroiliac joint injec-
tions. Unfortunately, these diagnostic techniques have
been shown to be poor predictors of the outcomes of
lumbar hardware removal [38—40]. Very few retrospect-
ive studies have been carried out to evaluate the out-
comes of lumbar hardware removal in subjects
reporting back pain despite an apparent solid fusion
and in absence of any obvious pain generator (e.g. per-
sistent neurologic impingement or adjacent level de-
generation) [38—41]. Hence, there is a pressing need for
identifying reliable predictors of lumbar hardware re-
moval outcomes [42].

Methods

The data analysis algorithms presented in this manu-
script were developed by relying on a database of sur-
face EMG recordings previously collected during
functional evaluations performed using an approach
referred to as the Electrodiagnostic Functional Assess-
ment (EFA) [34-36]. This section provides a descrip-
tion of the protocols utilized to collect the EMG data
and describes the algorithms developed in the study. It
also presents the application of the algorithms to a clin-
ical case of lumbar hardware removal in a subject who
had previously undergone instrumented lumbar fusion
and reported post-operative back pain.

Surface EMG data

The data had been previously gathered using two
EFA-based protocols consisting of a battery of static
and dynamic tests designed to assess individuals with
cervical pain and back pain, respectively. The dataset
included recordings from 62 subjects of age ranging be-
tween 22 and 61 years. Fifty-six of these individuals
were males. Forty-six of the subjects were evaluated
using both protocols. The remaining 16 subjects were
evaluated using only one protocol.

For the first protocol, surface EMG recordings were
gathered bilaterally from the following muscles of the
neck, shoulders, arms, and the thoracic section of the
back: scalene, upper trapezius (two channels were re-
corded using electrodes positioned on the descending
muscle fibers below the occipital bone and on the
transverse muscle fibers near the acromion, respect-
ively), middle trapezius, longissimus thoracis, middle
deltoid, biceps brachii, and triceps. Surface EMG re-
cordings were collected during two static tests, namely
1) while subjects sat still for about 20s (a condition
herein referred to as rest sitting) and 2) while they
stood without moving for about 20s (a condition
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herein referred to as rest standing). Surface EMG re-
cordings were also collected during three dynamic tests:
1) flexion/extension, rotation, and lateral movement of
the head (herein referred to as head movements), 2)
shoulder shrug and overhead reaching with both arms
(herein referred to as shoulder and arm movements),
and 3) a lifting functional capacity evaluation (FCE) (i.e.
pulling a bar attached to a load-cell with the bar posi-
tioned at waist level and the knees fully extended) first
with pronation of the forearms and then with supin-
ation of the forearms (this condition is herein referred
to as FCE lifting with extended knees).

For the second protocol, surface EMG data was gath-
ered bilaterally from the following muscles of the lower
back and legs: paraspinal at L2, latissimus dorsi, gluteus
maximus, biceps femoris, rectus femoris, tibialis anter-
ior, and gastrocnemius (medial head). Surface EMG re-
cordings were collected during the same static tests as
per the protocol summarized above (i.e. rest sitting and
rest standing) and during three dynamic tests: 1)
flexion/extension, rotation, and lateral movement of the
trunk (herein referred to as trunk movements), 2) taking
two steps, kneeling, and standing up (herein referred to
as walking and kneeling), and 3) a lifting functional
capacity evaluation (i.e. pulling a bar attached to a
load-cell with the bar positioned at knee height, the
knees in a flexed position, and the arms fully extended)
first with pronation of the forearms and then with su-
pination of the forearms (this condition is herein re-
ferred to as FCE lifting with flexed knees).

Disposable adhesive silver/silver-chloride electrodes
were utilized to collect the EMG data. The electrodes
were circular in shape (approximately 5 mm in diameter)
and had a layer of conductive gel to achieve low
skin-electrode impedance. The Surface Electromyography
for Non-Invasive Assessment of Muscles (SENIAM) rec-
ommendations [43] were followed to position the elec-
trodes on the muscle belly of the selected muscles. The
distance between the centers of electrode pairs was ap-
proximately 15 mm. Before attaching the electrodes to the
skin, the skin was carefully cleaned using alcohol wipes
and shaved when necessary. The electrodes were con-
nected to wireless Bluetooth units (Shimmer Research,
Dublin Ireland) that transmitted the EMG data to a base
station connected to a computer. The wireless units were
equipped with a DC-coupled unit (ADS1292R by Texas
Instruments, Dallas TX) that provided the analog
front-end as well as the analog-to-digital conversion. The
data was sampled at 1024 Hz. The data was available prior
to initiation of the study as part of a database meant to be
used to develop algorithms to facilitate the analysis of data
collected during functional evaluations. The database also
contained data collected using a load-cell (LSB302 by
Futek, Irvine CA) that relied on the above-mentioned
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wireless Bluetooth units and base station to simultan-
eously collect EMG and force data when required by the
EFA-based protocol (Emerge Diagnostics, Carlsbad CA).

An EMG expert had previously annotated the surface
EMG recordings performed during the above-described
EFA-based protocols [34—36] using criteria commonly used
in a clinical context to capture the level of muscle activity
(including its laterality), the presence/absence and severity
of muscle spasms, and the muscles’ motor unit recruitment
characteristics associated with the EMG amplitude modu-
lation. Clinical scores were generated via visual inspection
of the EMG data using an ordinal scale from O to 10 de-
signed to capture the magnitude of each phenomenon of
interest (e.g., an activity level score equal to 0 was associ-
ated with recordings marked by very low amplitude of the
EMG data, whereas an activity level score equal to 10 was
associated with recordings marked by very large ampitude
of the EMG data). Surface EMG recordings gathered dur-
ing the static tests were associated with clinical scores for
activity level and spasm severity. Surface EMG recordings
gathered during the dynamic tests were associated with
clinical scores for activity level and amplitude modulation.
From the clinical scores for activity level, the EMG expert
also derived laterality of activity scores by computing the
absolute value of the difference between the scores for the
right and the left side of the body for each muscle.

Figure 1 shows an example of the EMG recordings
selected from the dataset utilized in the study. The re-
cordings shown in the figure were collected from the
paraspinal muscles at L2 during the rest sitting test
(Figs. 1a and b) and the FCE lifting with flexed knees test
(Figs.1c and d). Figures 1a and c show data collected from
a subject with very low level of muscle activity (activity
level = 0) during the rest sitting test and high level of EMG
activity and amplitude modulation (activity level =10 and
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amplitude modulation =10) during the FCE lifting with
flexed knees test. Figures 1b and d show data collected
from a subject displaying an elevated level of muscle activ-
ity (activity level =5) during the rest sitting test and a
modest level of activity and minimum amplitude modula-
tion (activity level =3 and amplitude modulation =2)
during the FCE lifting with flexed knees test.

A low level of muscle activity is expected in physio-
logical conditions during the rest sitting test. In con-
trast, an elevated level of muscle activity is often
observed in subjects with back pain. An elevated level
of activity of the back muscles has been associated with
postural changes that are common acutely in individ-
uals who suffered a back injury and chronically in those
who experience chronic back pain [26]. The recordings
carried out during the static tests were also rated for
spasm severity. In individuals with back pain, muscle
spasms are believed to be triggered by the activity of
nociceptive receptors responding to strain and soft tis-
sue damage [17]. They can be observed in the EMG re-
cordings as short bursts of activity or as sustained
activity associated with large action potentials due to
the synchronization of motor units [28]. The evaluation
of the severity of muscle spasms in the latter case re-
quires close inspection of the EMG recordings to iden-
tify the presence of action potentials at quasi-regular
time intervals. Using these criteria, the EMG expert
rated the recordings in Figs. 1a and b for spasm severity
as 0 and 5, respectively. A high level of EMG activity
and prominent amplitude modulation is expected when
healthy subjects perform a functional capacity evalu-
ation. The latter is expected because of the pattern of
motor unit recruitment and de-recruitment that marks
each burst of EMG activity associated with changes in
the force generated by the muscle/s of interest. In

A o5 B
= 03
S‘a 01 ! )
RE

C D
3
= ;
© M%MMM
=
[}
(2]

0 2 4 6

Time (s)

8 10 12 14 16 18 20 0

2 4 6 8 10 12 14 16 18 20

Time (s)

Fig. 1 Examples of the surface EMG (SEMG) recordings utilized in the study to develop data analysis techniques suitable to generate estimates of
the clinical scores for activity level and spasm severity for the static tests and for activity level and amplitude modulation for the dynamic tests. The
recordings were collected from the paraspinal muscles at L2. Panels a and b show EMG data collected during the rest sitting test. Panels ¢ and d
show the EMG data collected during the FCE lifting with flexed knees test
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contrast, a modest level of activity and minimum amp-
litude modulation is expected in individuals with back
pain who display avoidance patterns [12].

Data analysis algorithms

Algorithms were developed using the Matlab (The Math-
Works, Natick MA) programming environment. Esti-
mates of the clinical scores were derived via the analysis of
surface EMG data by filtering the raw EMG recordings,
computing the EMG envelope, and extracting data fea-
tures from the filtered EMG data and from the EMG en-
velope. Filtering the raw EMG data was achieved using an
8th order elliptic band-pass filter with cut-off frequencies
equal to 20 and 400 Hz. This choice of cut-off frequencies
allowed us to significantly attenuate low-frequency com-
ponents associated with motion artifacts as well as
high-frequency components associated with the instru-
mentation noise. The EMG envelope was derived by
low-pass filtering the full-wave rectified raw EMG data
with a 7th order elliptic filter with cut-off frequency equal
to 10 Hz. We empirically determined the optimality of this
cut-off frequency as suitable to preserve “high-frequency”
amplitude modulation components relevant for an accur-
ate estimation of clinical scores (e.g. spasm severity
scores). Then different data features were derived to esti-
mate each clinical score. Estimates of the activity level
scores for the static tests were derived using the
root-mean-square (RMS) value of the EMG envelope. This
data feature appeared to be suitable to address the prob-
lem at hand because we observed that the EMG expert
generated the activity level scores based on visual inspec-
tion of the EMG data amplitude. Estimates of the spasm
severity scores for the static tests were derived using three
data features: the RMS value of the filtered EMG data and
the EMG data energy between 50 and 100 Hz and be-
tween 100 and 200 Hz. The energy of the EMG data in
each of the above-mentioned bandwidths was estimated
by deriving the periodogram of the EMG time series
(using 1's rectangular windows with 50% overlap) and in-
tegrating the EMG frequency components in the band-
width of interest. These data features were selected
because the EMG expert generated the spasm severity
scores by considering both the amplitude of the EMG data
and its frequency content. The latter was done in an at-
tempt to identify when a prevalent number of type II fi-
bers vs type I fibers were recruited. The frequency
bandwidths utilized to derive the above-mentioned pa-
rameters were determined empirically. Finally, estimates
of the clinical scores for the dynamic tests were derived
using the following EMG data features: the RMS value of
the EMG envelope, the range spanned by the filtered
EMG data (i.e. the peak-to-peak amplitude of the time
series), the RMS value of the EMG envelope during the
time intervals when the muscle was silent or minimally
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active, the duration of time during which the muscle was
active, the RMS values derived for the three main bursts
of EMG activity, the average RMS value of the dominant
frequency components of the EMG data, and the variance
of the EMG envelope during the three main bursts of ac-
tivity. The bursts of EMG activity were identified by using
a 1s sliding (by steps of 0.25s) rectangular window, esti-
mating the RMS value of the EMG envelope within each
1s time interval, and selecting non-overlapping time in-
tervals associated with the three largest RMS values. The
average RMS value of the dominant components of the
EMG data was derived by detecting the intervals during
which the EMG envelope exceeded 1.5 times the RMS
value of the EMG envelope during the entire test. These
data features were selected because we observed that the
EMG expert generated the clinical scores by considering
the amplitude of the EMG data and characteristics of its
modulation that appeared to be well captured by the
above-mentioned parameters.

Estimates of the activity level scores for the static
tests were derived by using the RMS value of the EMG
envelope as a “proxy” of the clinical scores. This choice
was motivated by the observation that the activity level
scores and the corresponding RMS values of the EMG
envelope appeared to be highly correlated. This choice
was made based on a qualitative observation of the data
and later confirmed by our quantitative analyses (see
the Results section). Activity laterality scores were esti-
mated by taking the absolute value of the difference be-
tween the activity level scores derived from the EMG
recordings for the right and the left side of the body for
a given muscle. The spasm severity scores were
estimated by using a linear regression model relying on
the above-mentioned EMG data features as independ-
ent variables. Finally, a linear regression model as well
as a regression implementation of a Random Forest
with the above-listed EMG data features as input vari-
ables were used to estimate the activity level scores and
the amplitude modulation scores for the dynamic tests.
A linear and a non-linear model for the analysis of the
EMG data collected during the dynamic tests were im-
plemented and compared because preliminary inspec-
tion of the EMG data features suggested that the
output variables (i.e. the clinical scores) and the input
variables were non-linearly related. The estimates of
the activity level scores were also used to derive esti-
mates of the activity laterality scores as described
above for the static tests. Separate models were devel-
oped for the EMG data collected during each test.

The derivation of the linear regression coefficients for
the static tests took into consideration the unbalance
across classes corresponding to the different values of
the clinical scores. This is a standard technique utilized
in machine learning to avoid fitting well the data
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pertaining to classes with a large number of samples
and fitting poorly the data pertaining to classes with a
small number of samples [44]. Accordingly, because the
instances of spasm severity scores equal to 0 were sig-
nificantly larger than the instances for other score
values, we randomly down-sampled to 10% of the total
sample size the class associated with clinical scores
equal to 0. We did so 10 times and hence derived 10
datasets to fit the model (i.e. 10 training sets). Also, be-
cause a relatively small number of instances with spasm
severity scores greater than 5 was available, first, a
model was developed using the instances with scores
ranging from O to 5. Then, the model was applied to all
the data. This process was repeated 10 times, for each
of the datasets derived as mentioned above. Finally, the
coefficient values of the model obtained for each of the
10 datasets were averaged. This approach was also used
to derive linear regression models for the dynamic tests.
The score distribution across classes for the dynamic tests
was different than the score distribution for the static
tests. The procedure was modified accordingly by
down-sampling the class with the largest number of in-
stances. The importance of each independent variable to
generate the clinical score estimates was assessed based
on the magnitude of the model’s standardized coefficients.

The Random Forest [37] models were derived using
bootstrap aggregation (i.e. bagging [45]) of 100 regres-
sion trees with a minimum leaf size of 10. This method
is very robust even when dealing with unbalanced clas-
ses. Hence, it was not necessary to rebalance the clas-
ses. A 10-fold cross-validation was used to derive the
clinical score estimates. The importance of the input
variables (i.e. the EMG data features) was assessed by
measuring the increase in prediction error when the
values of the input variables were permuted across the
out-of-bag observations. This is a well-established
method to assess the relevance of the input variables of
a Random Forest [46].

The accuracy of the estimates derived using the
above-described methods was assessed by deriving the
root-mean-square error (RMSE) for each model. In
addition, a linear regression between the clinical scores
generated by the EMG expert and those estimated by
the above-described EMG-based algorithms was com-
puted for each clinical score. Regression coefficients as
well as 95% confidence intervals were computed for
each linear regression.

Clinical case study

A subject with persistent back pain after instrumented
lumbar fusion was evaluated using an EFA-based proto-
col prior to and after lumbar hardware removal. Before
the lumbar hardware removal surgery, the subject re-
ported low back pain with a severity level of 5 out of 10
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on a visual-analog scale. The pain radiated to the left
leg and was of higher intensity when stepping down
with the left leg. Numbness and tingling were reported
around the lumbar incision. The pain was clinically
managed with medications. Inspection of the lumbar
hardware during the surgery made apparent that one of
the screws had migrated in the spinal canal and was
likely to be responsible for the symptoms reported by the
subject. The lumbar hardware removal led to a significant
decrease in back pain, a decrease in pain medications, and
an improvement in the subject’s functional ability.

The study was approved by the Western Institutional
Review Board. The subject was evaluated using a modi-
fied version of the above-described protocol for the as-
sessment of subjects with back pain. The battery of
tests used to assess this subject included the following:
1) a series of rest sitting and a rest standing tests at the
beginning of the evaluation; 2) a trunk flexion/extension
movement test, which consisted of bending forward,
returning to the upright position, bending backward,
and returning to the upright position; 3) a trunk lateral
movement test, which consisted of bending laterally
first to the right and then to the left; 4) a walking and
kneeling test; 5) an additional set of rest standing tests;
5) a series of FCE lifting with flexed knees tests; and 6)
a final set of rest standing and rest sitting tests. During
the evaluation, surface EMG data was collected bilat-
erally from the following muscles: paraspinals at L2 and
L5, latissimus dorsi, gluteus maximus, biceps femoris,
and rectus femoris. In addition, triaxial accelerometer
recordings were gathered using wireless sensor units
positioned at L1 and S1 to derive range of motion data.
Also, a load-cell was used during the FCE tests.

Results

The results of the analyses carried out using the
above-described techniques are presented in the follow-
ing, first for the surface EMG data collected during the
performance of the static tests and then for the data
collected during the performance of the dynamic tests.
The datasets utilized in this part of the study were part
of the above-mentioned database of EMG recordings
collected from 62 subjects. In addition, this section of
the manuscript summarizes the results obtained by
using the algorithms to surface EMG recordings col-
lected as part of the above-described clinical case study.

Analysis of the EMG data collected during the static tests
Figure 2 shows a box plot representation of the results
obtained using the above-described algorithms for the
analysis of data collected during the performance of
static tests. The plots show aggregate results for the rest
sitting and the rest standing tests. For each class (i.e.
for each clinical score value), the plots display the
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median value of the EMG-based estimates (red hori-
zonal line), a box spanning the interquartile range of
the distribution of the clinical score estimates, and
whiskers that span the range from the minimum to the
maximum estimated clinical score values. It is worth
noticing that outliers (defined as values exceeding the
first and third quartile more than 1.5 times the inter-
quartile range) are not shown in Fig. 2. However, out-
liers were not removed when assessing the accuracy of
the EMG-based estimates (i.e. when estimating the
RMSE values as well as the regression coefficients and
corresponding 95% confidence intervals). It is also
worth noticing that when the number of instances in
a class is small, the interquartile range and the range
between the minimum and the maximum estimated
clinical score values might be undistinguishable.
Hence, the whiskers might be not clearly displayed in
the box plot representation. This is the case for a few
classes in Fig. 2.

Figure 2a shows the surface EMG-based estimates of the
clinical scores for activity level. The estimates were derived
using the RMS value of the EMG envelope as a proxy for
the activity level scores. Although the plot shows aggregate
results across testing conditions, separate models were de-
rived for the rest sitting and the rest standing tests. The re-
gression coefficients and corresponding 95% confidence
intervals derived from the data collected during the rest sit-
ting and the rest standing tests were equal to 0.89 + 0.04
(regression coefficient + 95% confidence interval value) and
1.19 £ 0.04, respectively. The small 95% confidence interval
values associated with the regression coefficients for both
the rest sitting and the rest standing scores are indicative of
a good correlation between the EMG-based estimates and
the clinical scores generated by the EMG expert.

Figure 2b shows the surface EMG-based estimates
of the clinical scores for spasm severity. The esti-
mates were derived using a linear regression model
with the following three independent variables as in-
put: the RMS value of the filtered raw EMG data
and the EMG data energy between 50 and 100 Hz
and between 100 and 200 Hz. Figure 2b shows ag-
gregate results for the rest sitting and the rest
standing tests. Regression coefficients and associated
95% confidence intervals were derived separately for
the rest sitting (0.63 +0.02) and the rest standing
(0.71 £ 0.02) tests. Both models used the above-men-
tioned independent variables as input variables. The
standardized coefficients and corresponding 95%
confidence intervals for the rest sitting test were
0.02+0.07, 0.58 £0.05, and - 0.03 £0.06. The stan-
dardized coefficients and corresponding 95% confi-
dence intervals for the rest standing test were 0.08
+0.11, 0.42 + 0.07, and 0.14 + 0.06. The values of the
standardized coefficients suggest that the EMG data
energy between 50 and 100 Hz is the most relevant
independent variable to estimate the spasm severity
scores.

Table 1 provides a summary of the above-discussed
results. The table shows the RMSE values as well as the
regression coefficients and associated 95% confidence
interval values for the EMG-based estimates of the clin-
ical scores for activity level and for spasm severity de-
rived for the static tests. The table shows also the
results for the laterality of activity scores. The RMSE
values range from 0.37 (for the estimation of the spasm
severity scores for the rest sitting test) to 0.98 (for the
estimation of the laterality of activity scores for the rest
standing test). The regression coefficient values range
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Table 1 RMSE, regression coefficients (RC) and associated 95%
confidence intervals (Cl) of the surface EMG-based estimates of
the clinical scores for the static tests

Activity Spasm Laterality of

Level Severity Activity

RMSE RC+Cl RMSE RC+Cl RMSE RC+Cl
rest sitting 072 089 +004 037 063+002 075 088=+005
rest 086 1.19+004 043 071+002 098 084 +006
standing

from 0.63 to 1.19 and the associated 95% confidence in-
tervals range from 0.02 to 0.06. These results indicate
that the proposed methods allow one to achieve accur-
ate estimates of the clinical scores for activity level,
spasm severity and laterality of activity scores.

Analysis of the EMG data collected during the dynamic
tests

Figure 3 shows an example of the surface EMG-based
estimates of the clinical scores for the dynamic tests.
Specifically, the figure shows the estimated amplitude
modulation scores using a linear regression model (Fig.
3a) and using a Random Forest-based algorithm (Fig.
3b) vs. the scores generated by the EMG expert for the
FCE lifting with flexed knees test. The box plot repre-
sentation of the surface EMG-based score estimates
shows that the Random Forest-based algorithm gener-
ated more accurate estimates than the linear regression
model. This qualitative observation is confirmed by the
estimation errors associated with these two different
approaches to achieve the clinical score estimates. In
fact, the RMSE of the surface EMG-based estimates
shown in Fig. 3a (for the linear regression model) was 2.09
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whereas the RMSE of the estimates shown in Fig. 3b (for
the Random Forest-based model) was 1.74.

Tables 2 and 3 show a summary of the RMSE values
as well as the regression coefficients and associated
95% confidence interval values for all the dynamic tests.
Table 2 shows the values for the surface EMG-based es-
timates derived using linear regression models. Table 3
shows the values for the surface EMG-based estimates
derived using Random Forest-based models. The tables
show the RMSE values as well as the regression coeffi-
cients and associated 95% confidence interval values for
all the test conditions for activity level, amplitude
modulation, and laterality of activity. The RMSE values
obtained using the Random Forest-based models were
on average smaller than those obtained using the linear
regression models with improvements approaching 50%
for the FCE lifting with extended knees test. The regres-
sion coefficients and 95% confidence intervals values
show a similar trend. The regression coefficients ob-
tained using the linear regression models ranged from
0.84 to 1.72 with 95% confidence interval values ran-
ging from 0.01 to 0.18. The regression coefficients ob-
tained using the Random Forest-based models ranged
from 0.88 to 1.04 with 95% confidence interval values
ranging from 0.02 to 0.08. Overall, these results indi-
cate that Random Forest-based models are more suit-
able than linear regression models to estimate activity
level, amplitude modulation, and laterality of activity
scores. Analysis of the relevance of the EMG data fea-
tures used as input to the Random Forest-based models
showed similar results for the activity level and ampli-
tude modulation scores. In both cases, the most rele-
vant input variables to estimate the clinical scores were
the RMS values derived for the three main bursts of
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Table 2 RMSE values, regression coefficients (RC) and
associated 95% confidence intervals (Cl) of the surface EMG-
based estimates of the clinical scores for the dynamic tests
derived using a linear regression model

Activity Amplitude Laterality of

Level Modulation Activity

RMSE RC+Cl RMSE RC+Cl RMSE RC+Cl
head 113 131+£002 105 128+003 143 121 £001
movements
shoulder 196 106+£001 216 121+001 176 1.02+005
and arm
movements
FCE lifting 197 101 £013 231 1.17£001 188 0.75+008
with
extended
knees
trunk 120 1.19+£018 143 137+002 141 107 +£008
movements
walkingand 187 1.04+002 200 132+004 172 086+ 006
kneeling
FCE lifting 185 1.03+£002 209 172+004 185 084+ 008
with flexed
knees

EMG activity, and the variance of the EMG envelope
computed for the largest burst of muscle activity.

The improved accuracy of the EMG-based estimates
obtained using Random Forest-based models over those
obtained using linear regression models is apparent
when one examines plots of the estimation errors as a
function of the clinical scores generated by the EMG
expert. An example of such plots is shown in Fig. 4.

Table 3 RMSE, regression coefficients (RC) and associated 95%
confidence intervals (Cl) of the surface EMG-based estimates of
the clinical scores for the dynamic tests derived using a
regression implementation of a Random Forest

Activity Amplitude Laterality of

Level Modulation Activity

RMSE RC+Cl RMSE RC+Cl RMSE RC+Cl
head 107 098+004 104 101+£007 146 088+ 008
movements
shoulder 113 100+003 145 100+£003 141 093 +£005
and arm
movements
FCE lifting 112 098 +002 122 098+002 137 093 +0.06
with
extended
knees
trunk 117 100+ 004 130 104+£005 134 098 +£005
movements
walking and 125 101 +003 164 101 +005 136 096+ 0.06
kneeling
FCE lifting 136 100+003 174 100+£004 152 101 +£006
with flexed
knees
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The plots in Fig. 4 allow one to compare the results ob-
tained with the above-mentioned approaches when esti-
mating the amplitude modulation scores for the FCE
lifting with extended knees test. The plot on the left side
(panel a) shows a clear trend in the bias affecting the
EMG-based estimates. This is likely to be the case be-
cause the linear regression model fails to account for
the non-linearity of the relationship between the input
variables and the amplitude modulation scores. Such
relationship is instead properly captured by the model
based on a regression implementation of a Random
Forest. In fact, the results show a modest trend in esti-
mation bias and a relatively constant variance of the
EMG-based estimates across clinical scores (panel b).
Similar plots were obtained for all the EMG-based esti-
mates for all the dynamic tests. Inspection of the plots
showed similar differences as those shown in Fig. 4 be-
tween the estimates derived using a linear regression
model and the estimates derived using a Random Forest-
based algorithm. These observations indicate that
Random Forest-based algorithms are more suitable
than linear regression models to estimate clinical scores
for recordings collected during dynamic tests.

Clinical application of the algorithms

The algorithms developed in the study were applied to
a dataset collected from a subject with persistent back
pain after instrumented lumbar fusion who underwent
hardware removal. The subject underwent functional
evaluations prior to and after lumbar hardware removal
using the protocol and equipment described in the
Methods section.

Figure 5 shows an example of the surface EMG and
load-cell data collected during the study. The panels of
Fig. 5 show the EMG recordings from the left para-
spinal muscle at L2 and the load-cell data collected
during the performance of the FCE lifting with flexed
knees test prior to (panels a and c¢) and after (panel b
and d) the hardware removal surgery. The activity level
and the amplitude modulation scores prior to the hard-
ware removal surgery were 2 and 0, respectively. The
corresponding clinical scores after the hardware removal
surgery were 4 and 3, respectively. These clinical scores
captured an increase in the EMG level of activity and its
amplitude modulation. In fact, the RMS value of the
bursts of EMG activity after the hardware removal surgery
was approximately 40% larger than those detected before
the surgery. The load-cell data also showed a marked in-
crease in force output following the lumbar hardware re-
moval surgery. In fact, the load-cell output barely reached
100 lbs before the surgery whereas it approached 150 lbs
after the surgery. It is worth noticing that the improve-
ments in the patterns of muscle activity shown in Fig. 5
were observed at the level of the lumbar fusion.
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Additional observations of interest were gathered
during the other tests performed as part of the
EFA-based protocol that was used to clinically assess
the subject. During the rest standing test at the begin-
ning of the battery of tests, the analysis of the data
identified a large level of activity in the right biceps
femoris that decreased after the lumbar hardware re-
moval surgery. Spasms were observed in the record-
ings from the left biceps femoris before surgery that
were not present after surgery and compensatory activ-
ity in the left rectus femoris that was not present after
surgery. The analysis of the surface EMG data col-
lected during the trunk flexion/extension movement

tests showed an improvement in the amplitude modu-
lation of the data collected from the paraspinal mus-
cles at L2 and at L5, and the gluteus maximus. The
data collected during the trunk lateral movement tests
showed improvements in the patterns of activity of the
right and left latissimus dorsi muscles, the paraspinal
muscles at L2 and at L5, and the biceps femoris. The
data collected during the walking and kneeling tests
showed bilateral improvements post-surgery in the
patterns of activity of the paraspinal muscles at L2 and
at L5. Improvements post-surgery were also observed
bilaterally in the activity of the paraspinal muscles at
L2 and at L5 during the rest standing tests that
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Fig. 5 Surface EMG (sEMG) recordings from the left paraspinal muscle at L2 and load-cell data collected during the performance of the FCE lifting
with flexed knees test. Panels a and ¢ show data collected before the hardware removal surgery. Panels b and d show data collected after the
surgery. The EMG recording before the lumbar hardware removal surgery shows a lower level of activity and a more modest amplitude modulation
compared to the data collected after surgery. It is worth noticing that Panels a and b show three bursts of EMG activity associated with the lifting task
and a fourth burst of activity associated with returning to the upright position
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followed the walking and kneeling tests and in the activity
of the biceps femoris and rectus femoris during the rest
standing tests that followed the FCE lifting with flexed
knees tests. No differences were observed during the rest
sitting tests at the end of the battery of tests.

These observations are clinically relevant. The re-
sults of the above-summarized analyses indicate that
the subject displayed patterns of muscle activity
post-surgery that were closer than the ones observed
before surgery to the physiological patterns of activity.
These EMG-based observations were associated with
improvements in range of motion, force output and in
the general status of the individual (e.g. self-report of
pain severity). Most importantly, close inspection of
the hardware during the surgery showed that one of
the screws had migrated in the spinal canal and was
likely causing the symptoms reported by the subject.
These results should be looked upon as a preliminary
example of potential application of the procedures de-
veloped in the study. The validity of the proposed ap-
proach will have to be confirmed in future clinical
studies. Nonetheless, the results herein reported suggest
that our approach could be utilized in clinical assessments
where other techniques have failed to capture the impact
of soft tissue damage causing back pain.

Discussion

The results presented in this manuscript show that the
clinical scores that EMG experts generate via visual in-
spection of the surface EMG recordings collected dur-
ing the performance of functional evaluations can be
accurately estimated by means of linear and non-linear
algorithms that use EMG data features as inputs. The
results show that clinical scores for activity level and
spasm severity for static tests can be accurately esti-
mated using linear algorithms. The use of such algo-
rithms leads to RMSE values smaller than 1 point of
the 10-point ordinal scale used by the EMG expert to
generate the clinical scores. Clinical scores for activity
level and amplitude modulation associated with dy-
namic tests can be accurately estimated using Random
Forest-based algorithms. The estimates generated using
such algorithms are marked by a RMSE smaller than 2
points of the 10-point ordinal scale used to generate
the clinical scores.

Accurate estimates of the activity level scores associ-
ated with the static tests were obtained by using the
RMS value of the EMG envelope as a proxy for the
clinical score. Using such a simple approach was pos-
sible because the activity level scores and the RMS
values of the associated EMG envelope time series
showed a clear linear relationship as measured by the
linear regression coefficient and 95% confidence inter-
val values shown in Table 1. Accurate estimates of the
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spasm severity scores for the static tests were achieved
by using three EMG-based data features as input to a
linear regression model: the RMS value of the filtered
raw EMG data and the EMG data energy between 50
and 100 Hz and between 100 and 200 Hz. The accuracy
of the EMG-based estimates was shown by the low
RMSE values and the small regression coefficients and
associated 95% confidence intervals associated with the
estimates. The model's standardized coefficients
showed the EMG data energy between 50 and 100 Hz
to be the most relevant independent variable to esti-
mate the clinical scores. This observation suggests that
spasms have a greater impact on the frequency content
of the EMG data in the 50-100 Hz bandwidth than on
other frequency components of the EMG data. In
addition, one would anticipate that the 50-100 Hz
bandwidth would be generally marked by a higher
signal-to-noise ratio than other portions of the fre-
quency content of the EMG data. This is because noise
components are expected to be quasi-uniformly distrib-
uted across the entire frequency range, whereas the ma-
jority of the EMG frequency components are expected
to be in the 50-100 Hz range.

The clinical scores associated with the EMG recordings
collected during dynamic tests (i.e. the activity level and
the amplitude modulation scores) were estimated by using
linear regression models as well as non-linear models
based on a regression implementation of Random Forests
[37] (ie. ensembles of regression trees). A set of
EMG-based features was used as input to these models:
the RMS value of the EMG envelope, the range spanned
by the filtered raw EMG data, the RMS value of the EMG
envelope for the time intervals when the muscle was silent
or minimally active, the duration of time during which the
muscle was active, the RMS values derived for the three
main bursts of EMG activity, the average RMS value of
the dominant components of the EMG data, and the vari-
ance of the EMG envelope during the three main bursts
of activity. The non-linear models were found to be more
suitable than the linear ones to estimate the activity level
and the amplitude modulation scores for data collected
during the dynamic tests. This was anticipated because
preliminary inspection of the relationship between the in-
dividual input variables and the clinical scores showed a
non-linear characteristic. Analysis of the relevance of the
EMG data features used to generate the clinical scores
using the Random Forest-based models showed that the
RMS values derived for the three main bursts of EMG ac-
tivity, and the variance of the EMG envelope during the
largest burst of muscle activity were the most relevant in-
put variables to estimate the clinical scores. This was not
unexpected because EMG experts generate the clinical
scores for the dynamic tests by primarily observing the
characteristics of the EMG amplitude modulation that
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marks the main bursts of muscle activity associated with
the performance of the task of interest.

It is interesting to notice that simpler models were
found to be satisfactory to estimate clinical scores for
static tests compared to dynamic tests. This could be
due in part to the fact that a simpler relationship exists
between EMG characteristics and force output during
static tests compared to dynamic tests. In fact, during
static tests (i.e. isometric muscle contractions), the
amplitude of the EMG data is linearly related to the
force generated by relevant muscles. Such relationship
is more complex during dynamic contractions when
additional factors - such as the relative displacement of
the surface electrodes with respect to the active muscle
fibers - affect the amplitude of the surface EMG data.
Furthermore, the analysis of EMG recordings collected
during dynamic tests requires consideration of the rela-
tionship between the EMG data and the characteristics
of the task (e.g. the requirements related to the bio-
mechanics of movement). Hence, it is not surprising
that a larger set of EMG-based data features and more
complex models (including non-linear models) are
needed to accurately estimate clinical scores for dy-
namic tests than those needed to estimate clinical
scores for static tests.

The use of algorithms to automatically generate clin-
ical scores from the EMG data is an interesting alterna-
tive to the generation of clinical scores based on visual
inspection of the recordings. A first important reason
to choose an EMG data feature-based approach is the
fact that functional evaluations require the collection of
a significant amount of EMG data during the perform-
ance of several motor tasks. Hence, visual inspection of
the data requires a substantial amount of time. A sec-
ond reason to choose an EMG data feature-based ap-
proach is the fact that the generation of clinical scores
via visual inspection of the EMG recordings, although
guided by well-established criteria, can be accurately
performed only by EMG experts. The EMG-based ap-
proach presented in this manuscript is an objective and
accurate alternative to the generation of clinical scores
via visual inspection of the EMG recordings. In
addition, it is worth noticing that EMG-based estimates
can be more easily characterized - in terms of their reli-
ability and validity - than clinical scores generated by
EMG experts. In fact, the latter are a function of the
level of expertise of the individual performing the as-
sessment, whereas the former are generated automatic-
ally based on the EMG recordings.

It is worth emphasizing that the method developed in
this study is conceptually independent on the specific
approach chosen to normalize the EMG data. The
normalization of the EMG data has been the subject of
numerous studies. In studies with focus on healthy
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individuals, it is appropriate and relatively easy to
normalize the EMG data by the amplitude of the re-
cordings performed during a maximum voluntary con-
traction. However, in studies with focus on individuals
with motor impairments and individuals who experi-
ence pain, alternative ways to normalize the EMG data
have been proposed because these individuals are not
capable of performing a reliable maximum voluntary
contraction [47-49]. The methodology herein proposed
can be applied to the analysis of EMG data irrespective
of the adopted normalization technique as long as the
models’ parameters are adjusted accordingly.

Our method complement approaches developed in
previous studies with focus on specific EMG data fea-
tures in the time and the frequency domain [50, 51].
For instance, a significant body of work has been de-
voted to estimating localized muscle fatigue using trad-
itional spectral analysis techniques for isometric
contractions [52—54] and time-frequency analysis tech-
niques for dynamic contractions [53, 55-59]. Contrary
to previously proposed techniques that have been fo-
cused on capturing specific characteristics of the EMG
recordings, the algorithms developed in this study are
suitable to capture all the complex aspects of the EMG
recordings that are captured via visual inspection of
the EMG data by EMG experts. In contrast, other
techniques (e.g. the analysis of the frequency content
of the EMG data) can capture data features that are
not easily identifiable via visual inspection of the data
in the time domain.

Furthermore, whereas the algorithms herein presented
generate accurate scores that quantify different aspects of
the surface EMG recordings, such scores should be inter-
preted by EMG experts in the context of the evaluation
protocol utilized in the study. For instance, spasms have
been observed in healthy subjects when lifting large
weights [60] and hence a spasm severity score greater than
zero could be expected in these experimental conditions
even in absence of a specific pathology.

The clinical relevance of the proposed technique was
highlighted by the clinical case study presented in the
manuscript. An individual with persistent back pain after
instrumented lumbar fusion who underwent hardware re-
moval was assessed using an EFA-based protocol. The
EMG recordings collected during the evaluation were ana-
lyzed using the algorithms developed in the study. The al-
gorithms were found to be sensitive to changes in the
EMG data and the clinical status of the individual pre- vs
post-surgery. Diagnostic methods that are currently used
in the clinic have been shown to very often fail in predict-
ing the outcomes of lumbar hardware removal. The re-
sults reported in this manuscript show that the proposed
approach has significant potential for clinical application.
The method should be further assessed in candidates for



Golabchi et al. BMC Musculoskeletal Disorders (2019) 20:13

lumbar hardware removal in absence of any obvious pain
generator. This is important because the proposed EMG
analysis-based technique appears to have potential for im-
proving the ability of clinicians to predict the outcomes of
lumbar hardware removal.

Whereas the EMG recordings used in the study were
collected during the performance of specific tasks (i.e.
tests that are part of EFA-based protocols), the concep-
tual development of the algorithms herein proposed is
applicable to recordings gathered during the perform-
ance of activities of daily living. Furthermore, the tech-
nology used to collect the data utilized in the study
consists of a set of wearable wireless units that could
be used to monitor individuals in the home and com-
munity setting. Collecting data outside of the clinic (i.e.
in real-life conditions) is of great interest in rehabilita-
tion medicine [61, 62]. Future studies should be focused
on evaluating the use of the algorithms herein pre-
sented to analyze data collected in unconstrained con-
ditions outside of the clinic.

Conclusions

The results of this study demonstrate that clinical scores
that capture the level of muscle activity, the presence/ab-
sence and severity of spasms, and the characteristics of
the EMG amplitude modulation can be estimated using
linear and non-linear algorithms relying on EMG data fea-
tures as their inputs. The complexity of these algorithms
varies with the complexity of the clinical observations.
The clinical case study presented in this manuscript sug-
gests that the proposed algorithms have potential for aug-
menting the ability of clinicians to predict the outcomes
of lumbar hardware removal in individuals who report
persistent back pain after instrumented lumbar fusion
despite an apparent solid fusion and in the absence of
any obvious pain generator. The approach utilized in
the study to design EMG-based algorithms is applicable
to data collected under unconstrained conditions and
hence is potentially suitable to perform clinical evalua-
tions using wearable sensor technology in the home
and community settings.
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