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Association between stress fracture
incidence and predicted body fat in United
States Army Basic Combat Training recruits
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Abstract

Background: A stress fracture (SF) is a highly debilitating injury commonly experienced in United States Army Basic
Combat Training (BCT). Body fat (BF) may be associated with this injury but previous investigations (in athletes)
have largely used SF self-reports and lacked sufficient statistical power. This investigation developed an equation to
estimate %BF and used that equation to examine the relationship between %BF and SF risk in BCT recruits.

Methods: Data for the %BF predictive equation involved 349 recruits with BF obtained from dual-energy X-ray
absorptiometry. %BF was estimated using body mass index (BMI, weight/height2), age (yr), and sex in the entire
population of BCT recruits over an 11-year period (n = 583,651). Medical information was obtained on these recruits
to determine SF occurrence. Recruits were separated into deciles of estimated %BF and the risk of SFs determined
in each decile.

Results: The equation was %BF = − 7.53 + 1.43 ● BMI + 0.13 ● age − 14.73 ● sex, with sex either 1 for men or 0 for
women (r = 0.88, standard error of estimate = 4.2%BF). Among the men, SF risk increased at the higher and lower
%BF deciles: compared to men in the mean %BF decile, the risk of a SF for men in the first (lowest %BF) and tenth
(highest %BF) decile were 1.27 (95%confidence interval (95%CI) = 1.17–1.40) and 1.15 (95%CI = 1.05–1.26) times
higher, respectively. Among women, SF risk was only elevated in the first %BF decile with risk 1.20 (95%CI = 1.09–1.32)
times higher compared to the mean %BF decile.

Conclusions: Low %BF was associated with higher SF risk in BCT; higher %BF was associated with higher SF risk
among men but not women.
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Background
A stress fracture (SF) is a serious and debilitating injury
commonly seen in United States (US) Army Basic Combat
Training (BCT). Previous studies found medically diag-
nosed SF incidence in BCT to range from 0.8 to 5.1% for
men and 1.1 to 18.0% among women [1–7]. SFs often
require removal from BCT and supervised rehabilitation
that lasts an average of 62 days [8]. Well researched factors
increasing susceptibility to SFs in BCT include female
gender [2, 3, 9, 10, 11], older age [9, 12, 13], and race/ethni-
city other than black [2, 9, 12–15]. The association between
SF risk and physical characteristics like height, weight, and
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body mass index (BMI) is not clear because results were
mixed in the various investigations [9, 14, 16–21]. No study
to date has examined the association between SF risk and
body fat (BF) in BCT, but there have been several investiga-
tions examining this association in athletes [22–25].
However, in most of these investigations [22–24] SFs were
self-reported and all [22–25] involved few athletes with SFs
(n ≤ 31) suggesting low statistical power.
BMI is generally taken as a surrogate for BF since it

has a close relationship to %BF with correlations on the
order of 0.7 [26–28]. However, a particular absolute BMI
level does not reflect the same level of body fat in men
and women. Examination of the data in a previous BCT
study showed that for the same BMI, women had 13 to
15% more BF [26]. Multiple regression equations that
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have included age, sex, and/or race/ethnicity in addition
to BMI have shown improved ability to predict %BF with
correlation ranging from 0.81 to 0.91 [28–33].
This investigation examines the ability of BMI, age,

sex, and race to predict %BF in a cohort of recruits in
BCT. After developing and validating a %BF predictive
equation, this investigation uses that equation to exam-
ine the association between %BF and SF risk in the
entire population of US Army recruits attending BCT
over an 11-year period. A specific %BF equation devel-
oped using military recruits would appear to be the most
appropriate to examine this relationship in BCT. Based
on previous studies [28–34] it was hypothesized that an
equation using BMI, age, sex, and race/ethnicity should
produce a correlation with a direct measure of %BF in
the range of 0.81 to 0.91. It was also hypothesized that
both high and low %BF would increase the risk of SFs
based on studies that have observed this relationship
between BMI and %BF [9, 35].

Methods
This study involved a secondary analysis of data from
past investigations that was approved by Human
Subjects Protection Office of the US Army Research
Institute of Environmental Medicine. Four legacy data-
bases were used, one to develop a %BF prediction equa-
tion and the others to apply this predictive equation to
examine the relationship between %BF and SF risk. The
database used to develop the %BF predictive equation
contained date of birth, height, weight, sex, race/ethni-
city, and percent body fat (%BF) on 180 male and 169
female BCT recruits. [36] Height was measured with a
stadiometer (Model GPM, Seritex Inc., Carlstadt, NJ)
and weight with a digital scale (Model 770, Seca Corp.,
Columbia MD) with subjects in T-shirts, shorts, under-
clothing, and socks. Date of birth, sex, and race/ethnicity
were self-reported. Body fat (BF) was measured with
dual-energy X-ray absorptiometry (DXA, Model DPXL,
Lunar Corp., Madison WI) [36]. Scanning with the DXA
began at the head and progressed in 1-cm segments to
the feet with the machine set to the faster 10-min scan-
ning speed. The Lunar software (version 3.6) was used
to provide %BF for each participant. Coefficients of vari-
ation for measuring fat mass using DXA have ranged
from 0.8 to 5.0% [37].
A database of all recruits attending BCT between 1997

and 2007 was compiled from three databases by the
Armed Forces Health Surveillance Branch (AFHSB) of
the Defense Health Agency. The first of these databases
was the Defense Manpower Data Center (DMDC)
Master Personnel File which was searched from January
1997 to December 2007 (11-year period) to identify indi-
viduals based on their first demographic record (indicat-
ing entry into the Army), with a rank of private (E1) to
specialist (E4), and 17 to 35 years of age. DMDC data-
base also provided birth year and race/ethnicity. The
second AFHSB database was the Defense Medical
Surveillance System which provided the injury data on
recruits identified in the DMDC database. Specific
International Classification of Diseases, Version 9,
Clinical Modification (ICD-9) codes were searched for
the inclusive time from each recruit’s first DMDC record
to 10 weeks after the first DMDC record. This covered
the period of BCT plus time in the reception station
(where recruits are initially in-processed). SF cases were
recruits with the occurrence of an ICD-9 code for patho-
logical fractures or SFs (ICD-9 codes 733.1–733.19 and
733.93–733.98). Pathological fracture codes were in-
cluded because, prior to 2001, there was no ICD-9 code
specifically for SFs and the 733.1–733.19 series con-
tained the codes that clinicians in military facilities were
instructed to use for this purpose. It was previously
shown that use of the pathological fracture codes rapidly
declined shortly after the SF codes were introduced,
supporting the concept that clinicians were using the
pathological fracture codes for SFs prior to having specific
SF codes [38]. The third AFHSB database was that of the
Military Entrance Processing Station which provided sex,
height, and weight of the recruits. The AFHSC provided
the investigators with a single de-identified database
linking information from these three databases.
In all databases where available, age was calculated as

year of entry into BCT minus birth year. BMI was calcu-
lated as weight/height2. In the database used to develop
the %BF predictive equation, non-linear regression
techniques were applied, but they accounted for little
additional variance in %BF compared to linear tech-
niques so the latter was used to develop the equation.
Predictive residual sums of squares (PRESS) statistics
were used to cross-validate the %BF predictive equation
[39]. PRESS statistics compute residual errors based on
successive removal and subsequent replacement of cases.
These PRESS-residuals are summed and replace the
residual sum of squares for the entire model to provide
a modified correlation coefficient (r-value) and standard
error of estimate (SEE).
SF incidence was calculated as: recruits with one or

more SFs / total number of recruits X 1000 (cases/1000
recruits). Univariate logistic regression was performed to
quantify risk of SFs at deciles of estimated %BF. Simple
contrasts were used, comparing the risk at a baseline
(referent) decile of %BF (defined with a risk ratio of 1.
00) to other deciles of that variable. The baseline decile
of %BF was selected such that it included the mean BF
value. A multivariate logistic regression model was con-
structed with SF incidence as the dependent variable
and race/ethnicity and %BF as independent variables to
see if race/ethnicity modified the relationship between



Table 1 Physical Characteristics of Men and Women in Databases

Database Variable Men (Mean ± SD) Women (Mean ± SD)

Body Composition Age (yr) 22 ± 4 21 ± 3

Height (cm) 176.5 ± 7.1 163.1 ± 6.2

Weight (kg) 78.9 ± 12.7 62.6 ± 9.8

BMI (kg/m2) 25.3 ± 3.7 23.5 ± 3.0

Body Fat (%) 16.7 ± 6.3 28.8 ± 6.5

Recruit Population 1997–2007 Age (yr) 21 ± 3 21 ± 4

Height (cm) 175.6 ± 6.9 162.7 ± 6.4

Weight (kg) 76.1 ± 13.3 61.8 ± 9.5

BMI (kg/m2) 24.6 ± 3.8 23.3 ± 3.0

Body Fat (%) 15.7 ± 5.6 28.5 ± 4.3
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%BF and SF incidence. In both regression models, odds
ratios (OR) and 95% confidence intervals (95%CI) were
calculated comparing each decile to the referent decile.
Statistical Software for the Social Sciences (SPSS, version
24.0) was used to analyze all data.

Results
The addition of BMI, age, and sex to the regression
model accounted for significant portions of the vari-
ance in DXA %BF (p < 0.05) but race/ethnicity did
not (p = 0.94). The racial distribution of the BCD
sample was 55.01% White, 28.65% Black, 12.32%
Table 2 Association between Stress Fracture Incidence and Body Fa

Sex Percentile Body Fat Range (%) n Injury Inciden

Men 1–10 < 8.90 47,545 23.7

11–20 8.90–10.62 47,603 18.2

21–30 10.63–12.08 47,382 16.6

31–40 12.09–13.51 47,706 16.3

41–50 13.52–15.05 47,431 16.8

51–60 15.06–16.73 47,778 18.6

61–70 16.74–18.60 47,579 20.0

71–80 18.61–20.61 47,525 20.4

81–90 20.62–23.52 47,605 21.1

91–100 ≥ 23.53 47,591 21.4

Women 1–10 < 22.90 10,779 90.1

11–20 22.90–24.56 10,802 81.4

21–30 24.57–25.97 10,805 80.2

31–40 25.98–27.23 10,752 79.6

41–50 27.24–28.53 10,712 76.6

51–60 28.54–29.55 10,827 81.0

61–70 29.56–30.78 10,842 80.8

71–80 30.79–32.21 10,788 72.8

81–90 32.22–34.20 10,793 77.3

91–100 ≥ 34.21 10,806 79.2
Hispanic, 2.29% Asian, 1.43% American Indian, and
1 recruit without race specified. The resulting mul-
tiple linear regression equation was:

%BF ¼ ‐7:53þ 1:43•BMIþ 0:13•age‐14:73•sex;

where BMI was in kg/m2, age in years, and sex coded
as either 1 (men) or 0 (women). For this equation,
the r = 0.88 and the SEE = 4.2 %BF. The PRESS
estimated r-value was 0.84 and the SEE was 4.2 %BF.
Adding interaction terms (age X BMI, age X sex, BMI
X sex) accounted for little additional variance (r < 0.01).
t

ce (cases/1000) Logistic Regression Odds Ratio (95%CI) p-value

1.27 (1.17–1.40) < 0.01

0.98 (0.89–1.07) 0.62

0.87 (0.79–0.96) 0.02

0.90 (0.82–0.99) < 0.01

0.89 (0.81–0.98) 0.03

1.00 Referent

1.07 (0.98–1.18) 0.13

1.10 (1.00–1.20) 0.05

1.14 (1.04–1.24) < 0.01

1.15 (1.05–1.26) < 0.01

1.20 (1.09–1.32) < 0.01

1.07 (0.97–1.18) 0.18

1.05 (0.95–1.16) 0.32

1.04 (0.95–1.16) 0.38

1.00 Referent

1.06 (0.96–1.18) 0.22

1.06 (0.96–1.17) 0.24

0.95 (0.86–1.05) 0.30

1.01 (0.92–1.12) 0.83

1.04 (0.94–1.15) 0.45



Knapik et al. BMC Musculoskeletal Disorders  (2018) 19:161 Page 4 of 8
Age and physical characteristics of the men and women in
the database used to develop the predictive equation are
shown in Table 1.
The database containing all individuals in BCT be-

tween 1997 and 2007 included 614,606 recruits. Of
these, 30,955 recruits (5.0%) were missing either birth
year, gender, height, and/or weight and were not consid-
ered further in the analysis. The final dataset used for
analysis contained 583,651 recruits, with 475,745 men
and 107,906 women. Age and physical characteristics of
these recruits are shown in Table 1.
Table 3 Multivariate Association between Stress Fractures, Body Fat

Sex Variable Strata n Injury Incidence (case

Men Body Fat < 8.90% 47,545 23.7

8.90–10.62% 46,603 18.2

10.63–12.08% 47,382 16.6

12.09–13.51% 47,706 16.5

13.52–15.05% 47,431 16.6

15.06–16.73% 47,778 18.7

16.74–18.60% 47,579 20.0

18.61–20.61% 47,525 20.4

20.62–23.52% 47,605 21.1

≥ 23.53% 47,591 21.4

Race/Ethnicity Black 72,155 12.2

White 324,089 21.0

Hispanic 52,684 19.3

Asian 15,439 17.0

Am Indian 4812 21.8

Other 1393 25.8

Unknown 5173 16.0

Women Body Fat < 22.90% 10,779 90.1

22.90–24.56% 10,802 81.4

24.57–25.97% 10,805 80.2

25.98–27.23% 10,752 79.6

27.24–28.53% 10,712 76.6

28.54–29.55% 10,827 81.1

29.56–30.78% 10,842 80.8

30.79–32.21% 10,788 72.6

32.22–34.20% 10,793 77.4

≥ 34.21% 10,806 79.2

Race/Ethnicity Black 31,661 60.9

White 55,580 90.5

Hispanic 13,388 81.5

Asian 3608 76.8

Am Indian 1784 81.3

Other 428 102.8

Unknown 1457 74.1
The overall SF incidence was 1.9% for men and 8.0%
for women as reported previously [38]. Table 2 shows
the SF risk for men and women by deciles of estimated
%BF. The men demonstrated a bimodal relationship with
elevated SF risk in the lowest and highest %BF groups
compared to the decile containing the mean %BF. The
women had high SF risk at the lowest %BF decile com-
pared to the mean %BF decile, but the SF risk at the
higher BF deciles were similar to the mean decile.
Table 3 shows that the addition of race to the logistic

regression model did little to modify the relationship
, and Race/Ethnicity

s/ 1000) Multivariate Logistic Regression Odds Ratio (95%CI) p-value

1.27 (1.16–1.39) < 0.01

0.98 (0.89–1.07) 0.61

0.89 (0.81–0.98) 0.02

0.89 (0.80–0.97) 0.01

0.89 (0.81–0.99) 0.04

1.00 Referent

1.07 (0.97–1.17) 0.17

1.08 (0.99–1.19) 0.09

1.13 (1.03–1.23) 0.01

1.17 (1.07–1.28) < 0.01

1.00 Referent

1.72 (1.60–1.85) < 0.01

1.56 (1.43–1.71) < 0.01

1.38 (1.20–1.59) < 0.01

1.75 (1.42–2.15) < 0.01

2.12 (1.52–2.98) < 0.01

1.31 (1.04–1.64) 0.02

1.22 (1.11–1.35) < 0.01

1.09 (0.98–1.20) 0.10

1.06 (0.96–1.18) 0.22

1.05 (0.95–1.16) 0.35

1.00 Referent

1.07 (0.97–1.18) 0.21

1.06 (0.96–1.17) 0.23

0.95 (0.86–1.06) 0.35

1.03 (0.93–1.13) 0.63

1.07 (0.97–1.18) 0.18

1.00 Referent

1.54 (1.46–1.63) < 0.01

1.37 (1.27–1.48) < 0.01

1.28 (1.12–1.46) < 0.01

1.37 (1.15–1.64) < 0.01

1.77 (1.29–2.43) < 0.01

1.23 (1.01–1.51) 0.04
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between %BF and SF risk. Race was an independent risk
factor in the multivariate model with black recruits
having lower SF risk than other race/ethnic groups.

Discussion
The major finding of the study was that women and men in
the lowest decile of body fatness had a 20–27% higher rela-
tive risk of developing a SF during BCT. Moreover, men in
the upper most decile had a 15% greater risk of SFs com-
pared to men in the mean BF decile. The same did not hold
for women, however. Gender differences in fat mass and
bioavailability of estrogens in young adults [40] may provide
a partial explanation for the sex differences at the higher
%BF levels. Estrogens have positive effects on bone forma-
tion [41] and adipocytes produce estrogens [42]. Thus,
women with higher %BF may have similar SF risk to women
with less BF because of higher estrogen levels. The increase
in SF risk at the lowest BF deciles may be related to frame
size. In previous studies, low BF was associated with smaller
bone width, reflective of small frames size [43], and individ-
uals with smaller tibia and femur widths were more likely to
experience lower body SFs in basic training [16].
To examine the contribution of %BF to the risk of

developing a SF during BCT, an equation was derived to
predict %BF, as %BF is not routinely measured on
recruits. Our hypothesis that there would be an accept-
able strength of the association between predicted and
actual %BF using BMI, age and sex was confirmed as the
Table 4 Equations Estimating %BF from BMI, Age, and Gender

Study Criterion Method for BF
Determination

Participants

Deurenberg
et al. [28]

Underwater weighting 749 healthy M & W,
16–83 yr. in Netherl

Gallagher
et al. [29]

4 compartment models using
dual energy x-ray absorptiometry,
doubly-labled water, &
underwater weighting

706 M & W, 20–94 y
BMI < 35 kg/m2,
residing near NY cit

Gallagher
et al. [30]

4 compartment models using
dual energy x-ray absorptiometry,
doubly-labled water, & underwater
weighting

1626 M & W, 20–97
convenience sample
from UK, US, and Ja

Jackson
et al. [31, 49, 50]

Underwater weighting 679 M & W, 18–61 y
from 3 US locations

Pasco
et al. 2012 [32]

Dual-energy x-ray absorptiometry 1766 M & W,
20–74 yr., in Austral

Gomez-Ambrosi
et al. 2012 [33]

Air displacement plethysmography 6123 Caucasians,
18–80 yr. in Spain

Present Study Dual-energy x-ray absorptiometry 349 healthy men an
women 18–35 yr.,
in US Army BCT

In all models, BMI is in kg/m2, age in years, and in all models except Gomez Ambro
Abbreviations: r2 explained variance (%), SEE standard error of the estimate (% body
Training, M men, W women
resulting equation had an r = 0.88 and a standard error
of estimate of 4.2%BF, which was very similar to the
strength of associations and errors of estimate derived
by others [28–33] (see Table 3). Inclusion of race did lit-
tle to improve the model. Initially it was assumed that
race could contribute to the predictability of %BF be-
cause of known racial differences in body composition
[34]. However, other investigations [29, 31] that have ex-
amined or included race/ethnicity in their %BF predict-
ive equations also showed that this variable contributes
little to the prediction of %BF when BMI, age and gen-
der were included. The present study did find that indi-
viduals self-reporting as black had a lower risk of SFs
than other racial groups, a finding that has been repli-
cated in many other investigations [2, 9, 12–15]. The
lower SF risk among blacks could be partly related to
the higher bone mineral density and thicker bone cor-
tical areas of blacks compared to other racial/ethnic
groups [44–47]. The racial difference in bone mineral
density between blacks and whites persists after adjust-
ments for body composition, dietary history, sun expos-
ure, biochemical bone markers, lifestyle characteristics,
and other factors [47].
The PRESS statistic produced an r-value and SEE that

were very similar to that obtained from the original data in
the multiple linear regression model. This indicated that
that the original model was consistent and that the equa-
tion produced an adequate prediction of %BF from BMI,
Equation for % Body Fat Prediction r2 SEE

ands
−5.4 + 1.20 ● BMI + 0.23 ● age - 10.8 ● sex 0.79 4.1

r.,

y

−10.02 + 1.46 ● BMI + 0.12 ● age - 11.61 ● sex 0.67 5.7

yr.,

pan

64.5–848 ● (1/BMI) + 0.079 ● age-16.4 ● sex + 0.05
● sex ● age + 39.0 ● sex ● (1/BMI)

0.74 5.0

r., −13.9 + 1.61 ● BMI + 0.13 ● age - 12.1 ● sex 0.75 5.5

ia
37.8 + 1.62 ● (BMI-mean) -16.7 ● sex - 0.06 ●
(BMI-mean)2 + 0.02 ● age - 0.17● sex ● (BMI-mean) + 0.03
● gender ● (BMI-mean) + 0.04 ● sex ● age

0.83 4.1

−44.988 + (0.503 ● age) + (10.689 ● sex) + (3.172
● BMI) – (0.026 ● BMI2) + (0.181 ● BMI ● sex) – (0.02
● BMI ● age) – (0.005 ● BMI2 ● sex) + (0.00021
● BMI2 ● age)

0.79 4.7

d −7.53 + 1.43 ● BMI + 0.13 ● age - 14.73 ● sex 0.77 4.2

si, sex is 0 = women, 1 =men. For Gomez Ambrosi, sex is 0 =men, 1 = female
fat), US United States, UK United Kingdom, NY New York, BCT Basic Combat
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age, and gender in our sample of male and female recruits.
Future BCT studies that collect height, weight, age and
gender may be able to use this equation to predict %BF.
Although no previous study has examined associations

between SF risk and body fat in BCT, three studies have
prospectively examined associations between BF and over-
all BCT injury risk [3, 5, 48]. Jones et al. [3] found a trend
for a bimodal relationship between time-loss injuries and
skinfold determined %BF in male recruits (n = 124) but
not female recruits (n = 186). Knapik et al. [48] found a
trend toward increasing risk of injuries of any type when
the lowest DXA-determined %BF tertile was compared
with the highest %BF tertile among both men (n = 169)
and women (n = 164). Westphal et al. [5] actually found a
trend indicating lower risk of any injury and time-loss in-
jury among groups with the highest and lowest %BF
groups compared to women in a mid %BF range (n = 156).
These equivocal results may be partially explained by the
relatively low sample sizes, few injury cases, and likely low
statistical power. In the present study, we included 95% of
recruits who attended BCT over an 11-year period which
included a very large number of SFs (n = 17,811).
At least four investigations have examined the association

between %BF and SFs in athletes. One study [22] of elite
female runners (n = 19 reporting SFs and 19 not reporting
SFs) found that DXA-determined %BF was lower but not
significantly different among women self-reporting a previ-
ous history of SFs (16.6% vs 17.4%, p > 0.05). Another study
[23] of university male and female lacrosse players (n= 5
men with and 30 men without SFs; n= 7 women with and
42 without SFs) also found no relationship between %BF
(determined with a Tanita MC-190 body composition
analyzer) and self-reported SFs. A third study of 54 female
runners (n= 22 with SFs) found no difference in %BF be-
tween SF cases (17.0% BF) and non-SF cases (17.7% BF)
(p > 0.05). Finally, the fourth study [25] matched 19 athletes
with diagnosed SFs (by X-ray, bone scan, or magnetic reson-
ance imaging) with 19 healthy athletes without SFs and
found no significant difference in DXA-determined %BF be-
tween the two groups (p= 0.31). Most studies [22–24] relied
on self-reports of SFs and all [22–25] had few SF cases, likely
making them underpowered to detect a significant relation-
ship between SF and %BF. Further, these studies [22–25]
compared average %BF among those with and without SFs
and did not compare risk at various %BF levels as reported
in the present study.
Several previous studies have examined the ability of

BMI, age, gender, and/or race to predict %BF [28–33] and
data on these studies and the equations developed are
shown in Table 4. Compared to the present investigation,
these previous studies used samples that possessed more
diversity in terms of age, BMI, and %BF. Yet the equation
produced here has similar level of prediction strength as
these other studies.
Limitations to this study should be noted. The %BF
body fat equation developed here was based on a sample
of Army recruits and the predictive equation is most
appropriately applied to this population. Nonetheless,
men and women entering the Army come from a wide-
ranging cross-section of the US and are broadly repre-
sentative of individuals of similar age within this national
population. The most obvious limitation is that the %BF
values in this study were estimated from a predictive
equation. Studies should be conducted that measure
actual BF in a large group of recruits and follow those
recruits through BCT to obtain SF incidence and examine
if the relationships established here are confirmed.

Conclusion
In summary, we developed a useful equation to predict
%BF in US Army recruits and showed that this equation
(using BMI, age, and sex) was consistent and produced
an adequate prediction of %BF. We applied this equation
to show that SF risk was higher among male and female
recruits with low %BF and among male recruits with
higher body fat.
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