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Abstract

Background: The condition of paraspinal muscles is known to be associated with some variables such as age,
gender, and low back pain. It is generally agreed that these muscles play an important role in the stability and
functional movements of the lumbar vertebral column. Although spinal instability has been shown to play an
essential role in degenerative lumbar spinal stenosis (DLSS), the role of paraspinal muscles remains elusive. The
main purpose of this study was to shed light on the relationship between the condition of paraspinal muscles and

symptomatic DLSS.

Methods: Two sample populations were studied. The first included 165 individuals with DLSS (age range: 40-88,

sex ratio: 80 M/85 F) and the second 180 individuals without spinal stenosis related symptoms and low back pain
(age range: 40-99, sex ratio: 90 M/90 F). Measurements were taken at the middle part of L3 vertebral body, using
CT axial images (Philips Brilliance 64). Muscles density was measured in Hounsfield units (HU) using a 50 mm? circle
of the muscle mass at three different locations and the mean density was then calculated. The cross-sectional area
(CSA) was also measured using the quantitative CT angiography method. Analysis of Covariance (adjusted for body
mass index and age) was performed in order to determine the relationship between the condition of paraspinal
muscles and symptomatic DLSS.

Results: Individuals in the stenosis group had higher muscle density as compared to the control group. The CSA
values for the erector spinae (both sexes) and psoas (males) muscles were significantly greater in the stenosis group
as compared to their counterparts in the control group. Additionally, density of multifidus (both sexes) and erector
spinae (males) muscles was significantly associated with symptomatic DLSS.

Conclusions: Our results show that individuals with symptomatic DLSS manifest greater paraspinal muscles density

and CSA (erector spinae), compared to the control group. Density of multifidus increases the likelihood of

symptomatic DLSS.

Keywords: Degenerative lumbar spinal stenosis, Paraspinal muscles density, Muscle cross-sectional area size,

Computerized tomography (CT)

Background

The density of the paraspinal muscles and their cross-
sectional area (CSA) size are known to be associated
with variables such as age, gender and weight [1-6].
Current evidence suggests that these muscles are smaller
in patients with chronic low back pain as compared to
healthy individuals of a similar age [3, 5, 7]. It is generally
agreed that muscles’ CSA and density reflect muscle
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performance and physical function [8-10] of individuals.
Condition of muscle such as density, CSA size and fatty
infiltration can be attained via medical imaging techniques
that provide non-invasive and reproducible information
[4, 11]. Computed tomography (CT) and magnetic reson-
ance imaging (MRI) have been used for measuring CSA
and the degeneration rate of muscles in patients with
muscular dystrophy [12, 13].

The paraspinal muscles play an important role in the sta-
bility and functional movements of the lumbar vertebral
column [14, 15]. Previous in vitro studies have reported
that the lumbar spine is inherently unstable [16] and that
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much of its stability is dependent on the integrated function
of the active, passive and neural sub-systems [17, 18]. De-
generative lumbar spinal stenosis (DLSS) is a clinical entity,
an age-dependent phenomenon that is associated with de-
generative changes of the three-joint complex and ligament
flavum hypertrophy [19-21]. Although spinal instability has
been shown to play an essential role in DLSS [22], the role
of paraspinal muscles remains elusive.

The aim of this study was to examine via medical im-
aging techniques whether an association between the
condition of paraspinal muscles and symptomatic DLSS
exists.

Methods

Study groups

This study was conducted as a cross-sectional study and
two groups of people were studied: the first, a control
group, included 180 individuals without spinal-stenosis-
related symptoms (age range: 40-99 vyears, sex ratio:
90 M/90 F). These subjects referred to the Department of
Radiology from 2008 to 2010 for abdominal CT scans due
to renal colic symptoms were interviewed. Individuals free
of spinal stenosis symptoms and low back pain were in-
cluded in the control group. The second, the DLSS group,
included 165 individuals (age range: 40—88 years; sex ratio:
80 M/85 F), who were consecutively enrolled from 2006
to 2010 for a general study on etiology and pathophysi-
ology of spinal stenosis [21, 23—25]. These subjects were
referred to CT scans due to symptoms of spinal stenosis
and were examined and interviewed by a spine surgeon
post scanning. Inclusion criteria were presence of inter-
mittent claudication accompanied by other symptoms re-
lated to spinal stenosis (low-back pain and radicular
referred pain) [26-28], and reduced cross-sectional area
of the dural sac (<100 mm?) [29-31] of at least one lum-
bar level (the radiological verification was carried out sep-
arately by two researchers). Individuals with congenital
stenosis (AP of the bony canal <12 mm) [26, 32], frac-
tures, spondylolysis, tumors, Paget’s disease, steroid treat-
ment, severe lumbar scoliosis (>20°) and iatrogenic (post
laminectomy, post fusion) were not included in this
group.

The CSA of the dural sac was measured from CT
scans (thicknesses of the sections were 1-3 mm and
MAS, 80-250) in the axial plane at the lumbar interver-
tebral disc levels (Fig. 1), using Brilliance 64 Philips
workstation (Medical System, Cleveland Ohio). This
workstation enabled the processing of the scans in all
planes and allowed a 3D reconstruction of the lower
lumbar region. All CT images for both groups were
taken in the supine position (extended knees) without
contrast material.

The density and CSA of the paravertebral muscles
were measured at the level of L3 mid- height since they
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are most extensive in this region [33, 34] and because
the boundaries between the multifidus muscle and the
erector spinae muscles become less clear as we descend
caudally [9].

Evaluation of para-vertebral muscles

1. Density of para-vertebral muscles (psoas, multifidus
and erector spinae) was measured in Hounsfield
units (HU) on the left and right sides (Fig. 2). The
value of each side (right, left) was obtained
separately by calculating the mean density from
measurements at three different locations (using a
50 mm? circle), i.e., at the center of the muscle mass
and at two additional points medial and lateral to it,
close to the muscles’ margin. Densities of right and
left muscles were then combined and the mean
value was calculated.

2. Cross-sectional area (CSA) of the para-vertebral
muscles (psoas, multifidus and erector spinae) was
measured on both sides separately and was defined
by manually outlining the innermost fascial border
surrounding the muscle, using the quantitative CT
angiography method (Fig. 3). A threshold technique
was then applied in order to eliminate the presence
of other tissues such as fat and bones. The mean
values for the right and left muscles were then
calculated. This CSA measurement (excluding fat
deposits) was proposed to be a better indicator of the
muscle’s contractile ability than the total CSA [35-37].

Statistical analysis
The sample size of this study was based on the statistical
power analysis (a = 0.05, = 0.8).

Analysis of Covariance (ANCOVA) was performed for
each gender separately in order to determine the associ-
ation between the condition of paraspinal muscles and
symptomatic DLSS (adjusted for body mass index and
age). Logistic regression analysis was also carried out
(separately for males and females) to reveal whether the
paraspinal muscles increase the likelihood of symptom-
atic DLSS.

In order to determine the intra- and inter-tester reli-
abilities, intra-class correlations (ICCs) were calculated
on repeated measurements for CSA and density of mus-
cles and CSA of dural sac on 20 individuals. Intra-tester
reliability was tested by one of the authors (JA) who car-
ried out the measuring of the muscles two times, within
intervals of 3—5 days. Inter-tester reliability involved two
testers (JA and KH) who took the measurements using
the same method within an hour of each other. Both tes-
ters were blinded to the results of the other. Significant
difference was set at P < 0.0.5.
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Fig. 1 Measurement of lumbar cross-sectional area of the dural sac

J

Results
Both intra- and inter-tester reliability rates for muscle
measurements were very high: the ICCs (intra-class cor-
relation coefficient) obtained for the intra-tester tests
were: CSA =0.940, density =0.920, and for the inter-tester
tests: 0.922 and 0.90, respectively. In addition, the ICCs
for both intra- and inter-tester reliability rates for CSA of
the dural sac were very high: 0.930 and 0.890, respectively.
No significant difference was found in the mean age
between the stenosis males and females and their coun-
terpart in the control group (Table 1). However, both
males and females in the stenosis group had greater BMI
compared to the control.

Para-spinal muscles and DLSS group

Both males and females in the stenosis group had higher
(P < 0.05) muscle density as compared to their counterparts
in the control group (adjusted for age and BMI) (Table 2).
Additionally, it is noteworthy that the greatest density
changes were found in multifidus muscle (22 to 24 %) ra-
ther than psoas or erector spinae (7—20 %) muscles.

The CSA values for the erector spinae and psoas mus-
cles were significantly greater in stenosis males as com-
pared to their counterparts in the control group (adjusted
for age and BMI). The mean CSA value for erector spinae
muscle was 1793 mm? and 1662 mm? (stenosis males vs.

control males) and for psoas 1097 mm?” and 1026 mm?,

respectively. Yet, significant differences among females
were noted only for the erector spinae muscle (1540 mm?>
vs. 1345 mm?, P = 0.014) (Table 3).

The results of the multivariable logistic analyses are pre-
sented in Table 4. Densities of multifidus for both gender
(OR: 1.10-1.12; P<0.007) and erector spinae muscles in
males (OR: 1.12; P=0.039) were found to increase the
likelihood of symptomatic DLSS development.

Discussion

The present study is, to the best of our knowledge, among
the largest to examine the relationship between paraspinal
muscles density and cross-sectional area (CSA) and symp-
tomatic degenerative lumbar spinal stenosis (DLSS).

The results of our study show that both males and fe-
males in our stenotic group manifested significantly
greater density of the paraspinal muscles and higher
CSA (for the erector spinae muscle) at the L3 level com-
pared to the control group. Additionally, the density of
the multifidus (both sexes) and erector spinae (males)
muscles was found to increase the likelihood of symp-
tomatic DLSS. However, no point of discrimination
could be established to differentiate between individuals
with and without symptomatic DLSS.

Our findings are in contrast to the general view that
paraspinal muscle density and size tend to show lower
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Fig. 2 Measurement of para-vertebral muscle density: psoas (1), multifidus (2) and erector spinae muscles (3)

Fig. 3 Measurement of cross-sectional area of psoas (1), multifidus (2) and erector spinae (3) muscles
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Table 1 Mean age and body mass index (BMI) + standard
deviation (SD) of the control and the stenosis groups by
gender. N =sample size

Study groups Mean age Mean BMI
(years) = SD (kg/m?) + SD
Control males (N =90) 629+ 1238 274+421
Stenosis males (N = 80) 66.2+10.82 289+455
P=0.066 P=0.021
Control females (N =90) 62+ 1297 2761+513
Stenosis females (N = 85) 62.5+ 863 3148 +5.83
P=0.795 P <0.001

CSA and density in individuals with low back pain [36, 38,
39], disc pathology [40], degenerative lumbar flat back
[41], degenerative kyphosis [42] and spinal stenosis [43].
Yarjanian and colleagues reported that CSA of paraspinal
muscles at L5-S1 level had decreased in individuals with
clinical stenosis (# = 15) compared with the asymptomatic
group. The observed muscle atrophy was attributed to
muscle denervation and/or disuse [43]. This result may
seem to contradict ours as we have found the reverse
phenomenon, but not so. Indeed individuals with lumbar
spinal stenosis manifest evidence for paraspinal denerv-
ation [44-46], mainly at the L5 level [47] hence, muscle
atrophy at L5-S1 level is expected. This results in inad-
equate lower lumbar segmental stabilization, which in
turn requires compensation by the paraspinal muscles at
higher levels. Increase in density of paraspinal muscles at
L3 level and above in DLSS individuals is therefore antici-
pated. Support to the above notion can be found in Leino-
nen et al. [48] study which reported that individuals with
clinical lumbar spinal stenosis manifested (“unexpectedly”)
good back muscle endurance and significantly lower para-
spinal muscle fatigue compared to healthy subjects. These
authors claimed that the poor relationship between
muscle endurance and denervation observed in individ-
uals with clinical stenosis may indicate the compensatory
use of other trunk extensor muscles.

Table 2 Mean density of paraspinal muscles (+ SD) in the
stenosis and control groups by sex

Sex Muscle Mean density (HU) + SD P value
Control (N=90)  DLSS (N=80)
Male Psoas 40+9 45+9 <0.001
Multifidus 34+15 45+12 <0.001
Erector spinae 34+ 11 43+£10 <0.001
N=90 N=285
Female  Psoas 40+38 43+10 0.01
Multifidus 24+16 3117 <0.001
Erector spinae 29+ 12 35+15 <0.001
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Table 3 Mean cross sectional area (CSA) of paraspinal muscles
(£ SD) in the stenosis and control groups by sex

Sex Muscle Mean CSA (mm?) +SD P value
Control (N=90)  DLSS (N=280)
Male Psoas 1026 + 276 1097 + 234 0.042
Multifidus 589+ 128 569+ 111 0331
Erector spinae 1662 + 394 1793 + 369 0.011
N=90 N=285
Female  Psoas 628 £ 168 698 + 145 0.076
Multifidus 477 £117 524 +121 0.163
Erector spinae 1345+ 338 1540+ 314 0014

The fact that degenerative lumbar spinal stenosis is
triggered by segmental instability [22], explains why this
disease is commonly accompanied by facet-joints arthro-
sis, intervertebral disc disease, ligamentum flavum
hypertrophy and osteophyte formation [49, 50].

Instability was determined by Pope and Panjabi [51] as
a mechanical entity that is related to loss of stiffness.
The paraspinal muscles act to support the spine and
maintain its stability [52]. Multifidus and erector spinae
muscles also act as back extensors [53]. The psoas
muscle is considered a major flexor for the hip joint, an
intersegmental extensor in the mid lumbar region, and
generally functions as an active postural muscle [54—56].
The different functions of the three muscles in stabiliz-
ing the lower spine explain why multifidus and erector
spinae were more responsive to DLSS than the psoas.

Two parameters were used in the current study to
evaluate muscle status: first, muscle density that reflects
quantity of muscle fibers, as well as the area of a mus-
cle’s fiber and the general packing of the contractile ma-
terial [57]. Second, CSA, which is determined mainly by
the total number of muscle fibers and, to a lesser degree,
by the size of the fibers [58]. According to our study,
density is the more sensitive parameter of the two. We
here argue that during the initial phase of spinal stenosis
cascade, when the spine segment is prone to repetitive
high loading and shearing forces that affect its stiffness
(stability), the paravertebral muscles may enhance

Table 4 Paraspinal muscles density that increases the likelihood
for DLSS development for males and females, logistic regression
analysis

Muscle OR (C) 95 % P value
Males

Density of multifidus 1.12 1.023-1.165 0.007

Density of erector spinae 112 1.004-1.177 0.039
Female

Density of multifidus 1.10 1.032-1.12 <0.001

OR odds ratio, CI confidence interval
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activities and contractions in order to compensate for
increased segmental mobility. Only at a later stage add-
itional mechanisms such as the thickening of ligamen-
tum flavum and hypertrophy of facet-joints are involved.
Supporting studies have reported that in short-term
spine instability, muscles can respond actively and re-
duce spinal movements [59, 60], whereas in the long
term, tissue remodeling in the form of osteophyte for-
mation and ligament hypertrophy may help to restore
stability [22, 61]. It has also been claimed that the hu-
man spine responds to changes in stability by utilizing
its own passive and active preventive mechanisms, i.e.,
muscles, ligaments and bone structures [59]. It has re-
cently been shown [62] that patients with low-back pain
(LBP) have significantly larger CSA of the psoas at the
levels of L3-4 and L4-5 than the control group. The au-
thors hypothesized that hypertrophy of the psoas was
the result of its increased activity in maintaining stability
of the lumbar spine.

Based on the above findings, we argue that the para-
spinal muscles work to control mobility and to achieve
stability in symptomatic DLSS individuals, thus resulting
in thicker and denser muscles. This muscle behavior, es-
sentially a recruitment strategy to compensate for re-
duced stability, was noted in other parts of the body, for
example the trunk [63, 64]. Additionally, in vitro studies
[16, 59] demonstrate that the multifidus muscle has the
capacity to restore control of segmental motion follow-
ing injury. Positive correlation between training pro-
grams and increased paraspinal muscle features (density
and CSA) was also reported [65—68]. Some studies have
also connected the condition of paraspinal muscles with
physical activities [9, 10, 68] and spine-fusion [5, 7, 69].
It can be argued that the greater density and CSA of the
paraspinal muscles in the DLSS group is due to hyper-
activity (spasm) of the muscles to limit motion and con-
trol for back pain [70]. However, this hypothesis can be
rejected as no association has been found between sever-
ity of low back pain and the CSA of paraspinal muscles
[71]. Moreover, paraspinal muscles atrophy has been
noted in patients with acute or subacute LBP compared
to controls [4, 68].

Our results are not in agreement with those of
Kalichman et al. who found no association between
paraspinal muscles density and radiological spinal
stenosis [6]. Conflicting data have also been pre-
sented by others with regard to degenerative lumbar
spine (e.g., facet-joints arthrosis, disc space narrow-
ing) [6, 41, 42] and have demonstrated an attenuation
in paraspinal features. This may be attributed to the
fact that different inclusion criteria were used for the
study groups (e.g., clinical vs. radiological stenosis)
and not all degenerated spinal segments necessarily
develop instability [72].
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Several studies have shown a negative correlation be-
tween the condition of paraspinal muscle and LBP and/
or disc pathology [4, 36, 37, 39, 69, 73]. Others have dis-
puted this and reported no correlation between the con-
dition of the muscles and LBP [6, 10, 71, 74]. These
conflicting data can perhaps be explained by one of the
following: (a) since LBP disorder is recognized as a
multi-factorial origin [75], muscle condition in these in-
dividuals can vary, (b) different methods were applied
for measurements (e.g., MRI, CT and ultrasonography),
(c) various measurements (e.g., density, total CSA and/
or free-fat CSA) and different lumbar spinal levels and
locations were used.

A correlation between symptomatic DLSS and para-
spinal muscle density was noted in our study. Changes
in CSA were less significant. A possible explanation for
this (changes in densities not in CSA) is that under in-
tense muscle activation, changes in density will precede
changes in CSA [58, 76]. Furthermore, after training, the
magnitude of changes in density will be 2-3 times
greater than changes in CSA [77].

Our findings indicate that the greatest change in muscle
density was notable for multifidus muscle (less for psoas
and erector spinae); it was also a significant factor to in-
crease the likelihood for symptomatic DLSS in both sexes.
This result is not surprising as the multifidus is the main
muscle controlling spinal motion and also contributes to
nearly 2/3 of the stiffness at L4-5 [78].

Approximately one-third of the elderly population man-
ifests radiological stenosis without symptoms [79, 80].
Therefore, diagnosis of clinical syndrome of spinal sten-
osis must be carried out based on the combination of
symptoms and signs together with the imaging findings
[81]. Others have also underscored the importance of his-
tory and physical examination in determining the clinical
syndrome of LSS [82] and the caution that physician
should take when evaluating older patients with suspected
spinal stenosis [83].

Since the increased paraspinal density in symptomatic
DLSS individuals was a specific radiological finding for
this disorder and not related to other degenerative lum-
bar spine disease, we suggest that this measurement can
be used as a radiological marker for detecting the clin-
ical syndrome of DLSS. Nevertheless, to establish reli-
able standards for DLSS, a much larger sample is
required.

Study limitation

The outcomes of this study warrant further investi-
gations and verifications to determine whether our
results are reproducible on different lumbar spine
levels (e.g., L1, L4 and L5 rather than L3), locations
and populations. An MRI study may provide higher



Abbas et al. BMC Musculoskeletal Disorders (2016) 17:422

resolution and clearer images of the soft tissue; this
technique may be preferable to CT. Finally, one
might argue that our finding may be due to the
negative effects of renal colic in the control popula-
tion (as some of them may indeed suffer from short
episodes of low back pain in the past) not the ‘posi-
tive’ effect of the stenosis. However, considerable
changes in the mass of muscles in individuals with a
short episode of low back rather than a chronic con-
dition, are not expected.

Conclusions

The current study shows that individuals with symptom-
atic DLSS manifest greater paraspinal muscles density
and CSA (erector spinae) compared to the control
group. Density of multifidus (both sexes) is significantly
associated with symptomatic DLSS.
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