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Gender differences in gait kinematics for
patients with knee osteoarthritis
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Abstract

Background: Females have a two-fold risk of developing knee osteoarthritis (OA) as compared to their male
counterparts and atypical walking gait biomechanics are also considered a factor in the aetiology of knee OA.
However, few studies have investigated sex-related differences in walking mechanics for patients with knee OA
and of those, conflicting results have been reported. Therefore, this study was designed to examine the differences in
gait kinematics (1) between male and female subjects with and without knee OA and (2) between healthy
gender-matched subjects as compared with their OA counterparts.

Methods: One hundred subjects with knee OA (45 males and 55 females) and 43 healthy subjects (18 males and 25
females) participated in this study. Three-dimensional kinematic data were collected during treadmill-walking and
analysed using (1) a traditional approach based on discrete variables and (2) a machine learning approach based on
principal component analysis (PCA) and support vector machine (SVM) using waveform data.

Results: OA and healthy females exhibited significantly greater knee abduction and hip adduction angles compared to
their male counterparts. No significant differences were found in any discrete gait kinematic variable between OA and
healthy subjects in either the male or female group. Using PCA and SVM approaches, classification accuracies of
98–100 % were found between gender groups as well as between OA groups.

Conclusions: These results suggest that care should be taken to account for gender when investigating the
biomechanical aetiology of knee OA and that gender-specific analysis and rehabilitation protocols should be
developed.

Keywords: Gait, Biomechanics, Kinematics, Knee, Osteoarthritis, Sex differences, Principal component analysis,
Support vector machine

Background
Osteoarthritis (OA) is the most common cause of mus-
culoskeletal pain and disability in the knee joint and it
has been suggested that disease development and pro-
gression may be related to atypical joint kinematics dur-
ing gait [1]. It has also been reported that females have a
two- to three-fold risk of sustaining knee OA as com-
pared to their male counterparts [2, 3]. Amongst a large
body of literature on OA gait, however, very few studies
have investigated gender-related differences in walking
mechanics for patients with knee OA [4–8] and of those,
conflicting results have been reported. Moreover, a re-
cent systematic review of the biomechanical variables

involved in the etiology of knee OA [9] called for further
investigation of gender differences in gait biomechanics
in order to better understand, and thereby characterize,
the unique gait patterns of older women and men and
possibly detect the early changes in gait that may lead to
OA pathology.
The few studies that have investigated gait differences

between patients with knee OA as compared to gender-
matched controls have produced conflicting results with
limited sample sizes [4, 10–13]. For instance, Manetta et al.
[10] investigated only male subjects and reported that sagit-
tal plane knee range of motion (ROM) during stance was
significantly reduced for OA males (n = 10) compared to
their healthy counterparts (n = 10). McKean et al. [4] re-
ported that OA females (n = 15) demonstrated significantly
reduced sagittal plane knee ROM as compared to healthy
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females while OA males (n = 24) exhibited similar sagittal
plane knee ROM as healthy males. Conversely, Ko et al.
[11] reported no differences between healthy and OA sub-
jects (n = 31 female; 29 male) in knee ROM irrespective of
gender-specific group. Thus, there is a clear discrepancy
among these aforementioned studies and further research
employing larger sample sizes is needed.
There is also limited gender-specific gait research

related to healthy non-OA individuals, especially in
middle-aged and older adults. While increased frontal
plane knee, hip and pelvis angles as well as increased
transverse plane hip angles have been well documented
in healthy young adult females [14–17], conflicting and
limited evidence exists for their older counterparts. To
our knowledge, only two studies have comprehensively
investigated gender-related differences in gait kinematics
for healthy older adults. Boyer et al. [18] studied 21 male
and 21 female healthy adults aged 50–79 years at self-
selected walking speeds and reported that healthy fe-
males exhibited a greater frontal plane hip peak adduc-
tion angle compared to males along with a reduced
sagittal plane knee angle at mid-stance and a greater sa-
gittal plane hip angle at toe-off compared to males. Ko
et al. [19] investigated 174 males and 162 females aged
50–96 years at a self-selected walking speed and, similar
to Boyer et al. [18], reported greater frontal plane hip
ROM for the healthy females as compared to the males.
However, in contrast to the latter [18], Ko et al. [19] re-
ported reduced sagittal plane hip and no differences in
knee kinematics for healthy females compared to males.
Therefore, further research into potential gender-related
differences in both knee OA and healthy, non-OA older
adults is needed.
The first purpose of this study was to examine gender

differences in gait kinematics at the ankle, knee and hip
joints as well as foot and pelvis segments, in three planes
of motion, for healthy individuals and individuals with
mild-to-moderate knee OA. The second purpose of this
study was to assess differences in gait kinematics between
healthy gender-matched subjects as compared with their
knee OA counterparts.

Methods
Participants
One hundred subjects with knee OA (males: n = 45;
females: n = 55) participated in this study. The subjects
ranged in age from 33 to 72 years. Their mean age,
height, mass, body mass index (BMI) and walking speed
are shown in Table 1. All the subjects with knee OA
were categorized as being normal weight (18 ≤ BMI ≤ 25:
n = 31), overweight (25 < BMI ≤ 30: n = 39), obese (30 <
BMI ≤ 40: n = 27), or severely obese (BMI > 40: n = 3) [7].
Participants had symptomatic unilateral (left-side: n = 43;
right-side: n = 37) or bilateral (n = 20) knee OA. Partici-
pants were included in the OA group if they met the
American College of Rheumatology clinical criteria for
mild-to-moderate knee OA [20]. Additionally, the fol-
lowing inclusion and exclusion criteria were used to de-
termine eligibility [21]:

Inclusion criteria

1. Have recent posterioanterior or skyline radiographs
confirming the presence of knee OA.

2. Have a Kellgren-Lawrence (K-L) grade < 3.
3. Have a 100-mm knee pain visual analog scale (VAS)

score > 20 mm on most days of the previous week.
4. The ability to walk on a treadmill without the use of

handrails.

Exclusion criteria

5. Are diagnosed with severe knee OA (K-L grade > 3).
6. Are currently undertaking physiotherapy or other

conservative management practices, including
corticosteroid injections.

7. Have taken oral corticosteroids or anti-inflammatories
in the 24 h prior to testing.

8. Have undergone, or were scheduled to undergo,
joint preservation surgery or total joint arthroplasty.

9. Have evidence of OA in any other weight bearing
joint.

10.Have systemic arthritic conditions.

Table 1 Anthropometric characteristics and walking speed of study population for male and female subjects with and without OA

OA Control P-value

Male
(n = 45)

Female
(n = 55)

Male
(n = 18)

Female
(n = 25)

OA male
and female

Control male
and female

Control and
OA male

Control and
OA female

Age (years) 55.18 (7.54) 55.33 (7.26) 54.83 (10.33) 52.12 (9.39) 0.92 0.38 0.88 0.10

Height (cm) 177.28 (7.53) 164.12 (6.92) 178.31 (4.90) 163.84 (8.19) <0.01 <0.01 0.60 0.87

Weight (kg) 88.75 (14.12) 73.97 (15.00) 83.51 (13.45) 64.18 (12.20) <0.01 <0.01 0.18 <0.01

BMI (m2/kg) 28.29 (4.67) 27.42 (5.14) 26.22 (3.58) 23.85 (3.57) 0.38 0.04 0.10 <0.01

Speed (m/s) 1.134 (0.05) 1.146 (0.03) 1.156 (0.05) 1.159 (0.02) 0.08 0.76 0.10 0.05

Bold number indicates statistically significant difference between groups of interest (p < 0.05)
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A group of 43 healthy subjects (males: n = 18; females:
n = 25) who had not experienced any musculoskeletal in-
juries over the 6 months prior to the time of testing, and
had no clinical signs or symptoms of knee OA, was used
for comparison. The subjects ranged in age from 40 to
79 years (Table 1). Healthy subjects were considered to
be at normal weight (n = 24), overweight (n = 15), or
obese (n = 4) [7]. Control participants did not undergo
radiographic examination but did not meet any of the
non-radiographic American College of Rheumatology
criteria.

Ethics, consent and permissions
The University of Calgary Conjoint Health Research Eth-
ics Board (CHREB) approved the collection of the data
(reference REB15-0557). Prior to collecting the data, all
participants provided their written informed consent to
participate and to have their anonymous/de-identified
data stored in a research database. Thus, no individual
participant’s data could be re-identified.

Data collection
An 8-camera VICON motion capture system (MX3+,
Vicon Motion Systems, Oxford, UK) and 9-mm retro-
reflective markers, were used to collect 3-dimensional
(3D) kinematic data at 120 Hz during untethered walk-
ing on a treadmill (Bertec Corporation, Columbus, OH).
The lab set up is shown in Fig. 1. Markers were placed
in the same manner described by Pohl et al. [22]. In
brief, 14 anatomical markers were attached to the fol-
lowing landmarks: the greater trochanters, medial and
lateral knee joint lines, medial and lateral malleoli, 1st
metatarsal heads and 5th metatarsal heads bilaterally.
Technical marker clusters, glued to a rigid plastic shell,
were placed on the pelvis (three markers), and bilateral
thigh and shank (four markers each) with self-adhering
straps. Three markers were taped to the heel counter of

each of the test shoes. These 25 markers represented
seven rigid segments. Two markers individually placed
on the anterior aspect of each shoe were used for
used for detecting toe-off events. This marker set has
been reported to produce highly reliable kinematic
waveforms [22].
Following placement of all the anatomical and seg-

ment markers, the subject was asked to stand for a static
trial. Standing position was controlled using a graphic
template placed on the treadmill with their feet posi-
tioned 0.3 m apart and pointing straight ahead. Once
the feet were placed in the standardized position, the
subject was asked to cross their arms over their chest
and stand still while one-second of marker location data
were recorded to identify joint centre locations and to
calculate the segment coordinate systems. Upon comple-
tion of the static trial, the 14 markers on the anatomical
landmarks were removed. Walking kinematic data were
collected while participants walked on a treadmill wear-
ing standard shoes (Nike, Air Pegasus) for 30 s during
which approximately 20–30 consecutive strides were
collected for processing and analysis. Subjects were
instructed to walk, without using the handrails, at a self-
selected speed within a range of 1.0–1.3 m/s. After
marker trajectories were filtered with a 10 Hz low-pass
2nd order recursive Butterworth filter, 3D rigid body
kinematics were calculated using a single value decom-
position approach outlined by Söderkvist and Wedin
[23] and the joint coordinate system suggested by Cole
et al. [24]. All participants were permitted as much time
as they required to familiarize themselves with treadmill
walking.

Data processing
Kinematic joint angles during the gait cycle were calcu-
lated using 3D GAIT software (Gait Analysis Systems
Inc., Calgary, Alberta, Canada), then segmented and nor-
malized into 60 data points for the stance phase and 40
data points for the swing phase of the walking gait cycle
(100 data points for one cycle). Stance phase was defined
as initial heel contact to toe off, with initial contact iden-
tified as the point in time of the most anterior position
of the superior calcaneal marker, and toe off was taken
as the point in time of the most posterior position of the
toe marker.
In examining differences amongst many variables be-

tween gender and diseased/injured groups, a significant
challenge exists in lowering the dimensionality of the
data in order to reduce the likely of Type I errors and
overfitting. One way to accomplish this is to pre-select
discrete variables, and due to strong correlations be-
tween angles of the same gait waveform (i.e., the same
joint and plane of motion), a pattern of motion may be
represented by only a few discrete angles of interest.

Fig. 1 Photograph of the clinical laboratory used in this experiment
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Consequently, eight discrete variables were selected
for each waveform including: (1) angle at touchdown,
(2–3) maximum and minimum peak angles during
stance phase, (4) angle at toe-off, (5–6) maximum and
minimum peak angles during swing phase, and (7–8)
ROM angles during stance phase and swing phase.
These discrete variables of interest were then averaged
from ten consecutive strides of data to produce a mean
for all three planes of motion for each of the three lower
extremity joints (ankle, knee and hip), as well as the pel-
vis segment along with transverse- and sagittal-plane po-
sitions of the foot segment in the global coordinate
system. These variables have been used in previous stud-
ies to investigate differences in gait kinematics between
genders as well as between knee OA and control sub-
jects [9]. Additionally, these variables have been used to
effectively describe the key features of kinematic wave-
forms during the entire gait cycle [25].
Discrete variables were combined (8 discrete vari-

ables × {[(3 joints + 1 pelvis segment) × 3 planes] + [1-
foot segment × 2 planes]} × 1 selected side) into one
112-dimensional row vector for each subject, creating
an n-by-112 matrix used as an input for the analysis,
where n is the number of subjects. These variables
were extracted from the affected side for the subjects
with unilateral knee OA and from the most affected
side for the subjects with bilateral knee OA, while for
the control subjects, discrete variables were randomly
extracted from either left or right side.

Data analysis
Data were analyzed across four groups: a male and fe-
male OA subject group (n = 100), a male and female
healthy subject group (n = 43), a male OA and healthy
male subject group (n = 63), and a female OA and
healthy female subject group (n = 80). For each of the
groups, two feature vectors were created based on the
original discrete variables and a principal component
analysis (PCA). First, the 112 discrete variables com-
prised the columns and the 100, 43, 63 and 80 subjects
comprised the rows of the original feature matrix for the
four groups above (X100×112, X43×112, X63×112 and
X80×112), respectively. Second, to create the PCA feature
matrix, the original feature matrix X was normalized
such that columns of X were subtracted by the means
and divided by the standard deviations. PCA is an or-
thogonal or a linear transformation technique used to
convert a set of possibly correlated variables into a set of
linearly uncorrelated variables by determining new bases
(principal components or PCs) that maximize the vari-
ability in the original data [26]. The normalized matrix
was transformed into the PC coefficients using the sin-
gular value decomposition (SVD) algorithm, which re-
sulted in a coefficient matrix V112×112 for each of the

normalized matrices. Similarly, PC variances or eigen-
values of the covariance matrix of X, (L1×99, L1×42, L1×62
and L1×79) were produced for each matrix. The PC
scores (Z100×99, Z43×42, Z63×62 and Z80×79) were com-
puted by multiplying the normalized matrix X by the PC
coefficient matrix V, and used as the PCA feature
matrix.
To examine the utility of the original discrete features

and the PCA features in identifying and discriminating
the differences between groups of interest, two ap-
proaches were used based on: (1) statistical criteria using
univariate analyses, i.e., one-way analysis of variance
(ANOVA) and Cohen’s d effect size, and (2) classifica-
tion accuracy using a multivariate analysis, i.e., a support
vector machine (SVM) classifier. Due to the use of mul-
tiple univariate statistical tests on multiple dependent
variables, the resulting p-values from the ANOVA were
controlled using a Holm-Bonferroni method [27] (i.e.,
adjusted p-value) for tests on all variables. Significant
and meaningful features [28] were identified when p <
0.05 and d > 0.8. To examine classification rates, two
models were used: (1) the original variable and (2) the
PC scores [25, 29], as input for the linear SVM (with a
soft margin parameter c of 1) [25, 30] to perform the
classification separately. The number of original vari-
ables or PC scores was increased by 1 according to a de-
scending order of effect size d at each step. The optimal
number of original variables or PC scores was obtained
when the maximum classification rate of SVM was pro-
duced according to the 10-fold cross validation method.

Results
Anthropometrics
A summary of the anthropometric and walking gait
speed differences between control and OA males and fe-
males are shown in Table 1. Healthy and OA males were
significantly taller and heavier than the females while
healthy males and OA females had a higher BMI than
the healthy females. OA females were also heavier as
compared with the healthy females.

Kinematic differences based on the statistical criteria
The mean of the individual joint angles for each joint
and plane of motion for each of the four gender-specific
subgroups are presented in Figs. 2, 3 and 4. Of the 112
discrete variables of interest, statistically significant and
meaningful differences between the 45 male and 55 fe-
male subjects with knee OA were found for three
discrete variables (p < 0.05 and d > 0.8; Table 2). Specific-
ally, OA females demonstrated greater knee abduction at
touchdown and during swing, as well as a greater max-
imum peak hip adduction angle during stance as com-
pared to OA males. For healthy subjects, the same
statistically significant and meaningful differences were
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found between the 18 male and 25 female subjects with-
out knee OA were found for three discrete variables (p
< 0.05 and d > 0.8; Table 2). There were no significant
differences between healthy males and OA males as well
as between healthy females and OA females in the ori-
ginal discrete variables (p > 0.05).

Kinematic differences based on the classification model
For gender differences in OA subjects, a maximum clas-
sification accuracy of 83 % was found between OA male
and OA female patients using the top 19 ranked discrete
variables sorted by effect size and the SVM classifier.
Specifically, fifteen discrete variables (79 % of the feature
vector) were extracted from frontal plane ankle, knee,
hip and pelvis kinematics. The remaining variables (21 %
of the feature vector) involved hip flexion-extension
ROM angle during stance, the ROM of pelvic angles
during stance and swing phases in transverse plane, and

the knee external rotation angle at touchdown. When
feature vectors were created based on the PC scores and
then sorted by effect size, OA males and OA females
could be separated with 99 % classification accuracy
using a linear SVM ten-fold cross-validation method
with the top 53 ranked PCs explaining 93.35 % of the
variance in the data. It is important to note that useful
information from all joints and planes of motion (i.e., all
the 112 discrete variables) was extracted and contained
in the PCA features.
For gender differences in healthy subjects, using the top 4

ranked discrete variables and the SVM classifier, the max-
imum classification accuracy of 86.05 % was found between
healthy male and healthy female subjects. These variables
were extracted from frontal plane knee kinematics (i.e., an-
gles at touchdown and the maximum peak during swing)
and hip kinematics (i.e., angles at the maximum and the
minimum peaks during stance). Using the top 29 ranked

Fig. 2 Frontal plane joint angles. The mean of individual time-normalized angles in the frontal plane for male and female subjects with and without knee
OA during stance phase and swing phase. All angles are measured in terms of the distal segment relative to the proximal segment. a Ankle inversion and
eversion, b knee adduction and abduction, c hip adduction and abduction, and d pelvis rotation to the same side and the opposite side of the subject’s
stance leg
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PCs explaining 64.14 % of the variance in the data, healthy
male and healthy female subjects could be separated with
100 % accuracy using the linear SVM classifier.
For the male subjects, the classification accuracy between

healthy subjects and OA subjects was 80.95 % using the
SVM classifier with the top 17 ranked discrete variables,
and 100 % with the top 42 ranked PCs, explaining 65.45 %
of the variance in the data. Specifically, thirteen discrete
variables (76 % of the feature vector) were extracted from
sagittal plane ankle, knee, hip and pelvis kinematics, while
the remaining variables (24 % of the feature vector) were
extracted from frontal plane pelvis kinematics.
For the female subjects, the classification accuracy be-

tween healthy and OA females was 71.25 % using the
SVM classifier with the top 7 ranked discrete variables,

and 98.75 % with the top 64 ranked PCs, explaining
91.95 % of the variance in the data. Specifically, six
discrete variables were extracted from knee kinematics
in all planes of motion. The other variable was the ROM
of foot angles during the swing phase.

Discussion
Kinematic differences between OA males and OA females
The first purpose of this study was to examine gender-
differences in gait kinematics between individuals with
and without knee OA. The current study significantly
builds upon previous research wherein the focus has been
limited to only a single joint or plane of motion [5–8].
Moreover, the current investigation involved ankle, knee
and hip joints, as well as foot and pelvis kinematics, for all

Fig. 3 Transverse plane joint angles. The mean of individual time-normalized angles in the transverse plane for male and female subjects with
and without knee OA during stance phase and swing phase. All angles are measured in terms of the distal segment relative to the proximal
segment. a Ankle internal rotation and external rotation, b knee internal rotation and external rotation, c hip internal rotation and external
rotation, d foot abduction and adduction, and e pelvis rotation the opposite side and the same side of the subject’s stance leg
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three planes of motion, in an attempt to better understand
the etiology of knee OA which is more prevalent in fe-
males as compared to males.
The results of the current study show that of the 112

discrete variables of interest, only kinematic variables for
frontal plane knee and hip joint motion were significantly
different between OA men and women during treadmill
walking (Table 2). Specifically, OA females demonstrated
greater knee abduction at touchdown and during swing as
compared to OA males. These results are in contrast to
Astephen Wilson et al. [5] who, using a similar PCA ap-
proach, reported that the only knee joint kinematic differ-
ences between OA males and OA females were in the
sagittal plane knee angle range during stance. However,
these authors [5] investigated severe knee OA patients

prior to, and following total knee arthroplasty (TKA), and
they only examined the differences in waveform shapes,
not discrete variables, so comparisons with the current re-
sults are difficult. In the present study, OA females also
exhibited significantly greater hip adduction angle at the
maximum peak during stance in comparison to their male
counterparts. Therefore, a novel finding of this study is
that frontal plane hip and knee kinematics appear to be
different between males and females, and the differences
at the hip and the knee persist in both healthy and OA-
symptomatic individuals.
In the sagittal plane, while McKean et al. [4] and

Astephen Wilson et al. [5] both reported that females
with moderate-to-severe knee OA exhibited reduced
knee ROM angles across the gait cycle, similar results

Fig. 4 Sagittal plane joint angles. The mean of individual time-normalized angles in the sagittal plane for male and female subjects with and
without knee OA during stance phase and swing phase. All angles are measured in terms of the distal segment relative to the proximal segment.
a Ankle plantarflexion and dorsiflexion, b knee flexion and extension, c hip extension and flexion, d foot dorsiflexion and plantarflexion with
respect to ground, and e posterior tilt and anterior tilt of the pelvis
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Table 2 Comparisons of the discrete kinematic variables between male and female OA subjects (i.e., OM and OF) and between male and female healthy controls (i.e., CM and CF)

Joint Plane of
motion

Variable of
interest

Mean angle (and its standard deviation) [deg] Significant and meaningful difference: effect size d

OA male (OM) OA female (OF) Control male (CM) Control female (CF) Gender - OA
(OM vs. OF)

Gender - Control
(CM vs. CF)

Disease - Male
(OM vs. CM)

Disease - Female
(OF vs. CF)

Knee Frontal At touchdown −1.37 (3.80) −4.88 (4.06) −2.02 (2.96) −5.75 (2.91) 0.89* 1.27* 0.19 0.20

Maximum peak
during swing

−1.24 (3.86) −4.66 (4.16) −1.77 (2.89) −5.20 (3.07) 0.85* 1.15* 0.16 0.15

Hip Frontal Maximum peak
during stance

4.86 (3.73) 7.67 (3.21) 5.41 (1.94) 8.69 (2.61) 0.81* 1.43* 0.19 0.35

Bold number indicates a large effect size (d > 0.8)
*indicates statistically significant difference between groups of interest (p < 0.05)
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were not evident in the present investigation for sub-
jects with mild-to-moderate knee OA. However, these
findings are similar to Sims et al. [8] who also re-
ported that knee ROM in OA females was no differ-
ent compared to OA males with K-L grades of 1–4.
It should be noted that the average walking speed ob-
served by Sims et al., [8] (1.1 m/s) was more similar
to that of the current study (1.1 m/s), contrary to
McKean et al. [4] (1.3 m/s) and Astephen Wilson
et al. [5] (0.9 m/s). The current results also suggest
that the maximum peak knee flexion angle during the
swing phase did not differ between OA males and
OA females. This result is in contrast to Kaufman
et al. [7], who observed this difference in 9 males and
11 females with OA. Therefore, based on the dispar-
ate findings amongst the current study and previous
studies, further research may be necessary to better
understand sagittal plane knee kinematics between
OA males and OA females.

Kinematic differences between healthy males and healthy
females
The current study found overall agreement as compared
to previous investigations involving gender differences in
gait kinematics for older adults [18, 19, 31]. Specifically,
in the current study healthy females exhibited signifi-
cantly greater maximum peak hip adduction during the
stance phase of gait as compared to healthy males
(Table 2). These results are similar to most previous
studies that have also reported differences in frontal
plane hip joint angles between young, middle-aged and
older healthy males and females during both walking
and running [14, 15, 18, 19, 25, 31, 32]. It has been sug-
gested that increased frontal plane hip motion, together
with hip abductor muscle weakness, may be a factor re-
lated to why healthy females are more likely to experi-
ence a musculoskeletal injury such as patellofemoral
pain [33] or iliotibial band syndrome [34], as compared
with their male counterparts. In addition, these results
are also in support to previous studies [15, 16, 31]
wherein healthy females exhibited significantly greater
knee abduction at touchdown in comparison to their
male counterparts (Table 2).
In contrast to investigations involving younger and

middle-aged healthy adults [14–16, 30], the current
study found no significant differences in knee external
rotation angles nor were there differences in hip internal
rotation angles between healthy older males and females.
A possible reason for these contradictory findings may
be the subtle changes in gait associated with biological
aging [30, 35]. The mean age of the subjects in the
current study was 53.26 years, while the subjects in
aforementioned studies were in their twenties or forties.
Therefore, it appears that gender-specific gait kinematic

differences for healthy older adults are dissimilar to
those previously found for healthy younger adults.

Kinematic differences between healthy subjects and OA
subjects
The second purpose of this study was to assess the differ-
ences in gait kinematics between healthy gender-matched
subjects as compared with their knee OA counterparts.
There were no significant differences between healthy
males and OA males or differences between healthy fe-
males and OA females in the original discrete variables.
These results are partially agreement with the results of
Ko et al. [11] and Weidow et al. [13] who reported no sig-
nificant differences between healthy and OA subjects in
knee kinematics for both gender-specific groups. On the
other hand, these results are in contrast to a study by
McKean et al. [4] who reported OA females exhibited less
sagittal plane knee and ankle kinematics based on the
PCA features of the gait waveforms as well as a study by
Manetta et al. [10] who reported that OA males exhibited
less knee flexion ROM during stance based on the discrete
variables as compared to their healthy counterparts.
It is interesting to note that the standard deviations of

the discrete variables, as well as the variability in wave-
form data, were both larger for OA affected males and
females. This finding suggests an overall pattern of in-
creasing variance, and possibly, individualized responses
to disease progression, making characterization of the
group as a whole, more challenging, especially when
sample sizes are limited as in many of the aforemen-
tioned studies. Further research utilizing large sample
sizes and sub-typing of OA individuals may provide
valuable insight into characterizing gait changes in re-
sponse to OA [36].

Multivariate analysis and classification model
When the number of biomechanical variables is high and
the between-group differences are relatively small, multi-
variate analysis and machine learning methods can provide
insight into group biomechanical characteristics. This study
clearly shows that a PCA and SVM approach can provide
insight into complex relationships of biomechanical gait
variables, as compared to multiple univariate analysis
methods. However, this approach does have a trade-off in
the interpretability of the result, as the feature vectors used
to separate genders or disease states often include data
from many different joints and planes. It is therefore advis-
able to combine both approaches for a more comprehen-
sive understanding of biomechanical differences between
groups.
To our knowledge, no previous investigations have uti-

lized the PCA and SVM approach to discriminate be-
tween male and female subjects with and without knee
OA during walking. Deluzio and Astephen [37] used a
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PCA and a linear discriminant analysis (LDA) approach
to discriminate between healthy and knee OA mixed-
gender groups and reported a classification accuracy of
92 %. The results of the current study show that classifi-
cation accuracies of 98–100 % are possible for discrimin-
ation between males and females for both healthy and
OA subject groups as well as between healthy and OA
subjects for male and female subject groups using the
PC scores as the input features for the SVM classifier.
Although not as effective as the PCA approach, the ori-
ginal discrete variables still produced classification ac-
curacies of 71–86 % when used as input features for the
SVM classifier. Thus, careful consideration of the final
interpretation of the data, as well as the desire for high
classification accuracy, are both needed when deciding
on a statistical approach.

Limitations
Limitations to the current research study are acknowl-
edged. We did not collect ground reaction force, or elec-
tromyography data and thus neither body kinetics, nor
muscle activation patterns, were included in the analysis.
However, Boyer et al. [18] reported no differences in the
normalized ground reaction force between healthy and
knee OA groups. Moreover, we chose to use joint kine-
matic angles to simplify the clinical interpretation of the
results and shed some light on the greater prevalence of
this disease in the female population as compared with
males. Other clinical measures could also be incorporated
to better understand the underlying mechanisms of knee
OA. For example, future studies should include joint kin-
etics and ground reaction force data along with other clin-
ical variables such as muscle strength, passive range of
motion, muscle activation or knee stability to gain a
greater understanding of sex-related differences in walking
gait biomechanics, in an OA-affected population. In
addition, self-reported pain and function scores, along
with KL grade were only used for inclusion into the
current study. Future studies should include these mea-
sures as previous studies have been shown to provide a
better understanding gait kinematic patterns within dis-
tinct sub-groups of patients [38].
Since the subjects involved in the current study were all

experiencing knee OA at the time of testing, and had been
experiencing pain on most days of the previous week, cause
and effect relationships cannot be established between the
etiology of knee OA and walking biomechanics. However,
the cross-sectional information gleaned from the current
study has the potential to inform gender-specific rehabilita-
tion and treatment approaches. Future prospective studies
involving subjects, grouped by age and gender, will be an
invaluable addition to the literature.
Confounding factors may exist between the groups

studied, including pain (as previously mentioned), gait

speed and BMI. We acknowledge that walking speed in in-
dividuals with knee OA may influence a number of gait
biomechanical variables [39–41], however, the walking
speeds of OA males (a mean of 1.134 m/s and a range of
1.01–1.23) and OA females (a mean of 1.146 m/s and a
range of 1.06–1.21) in the present study were similar
across groups and comparable to the self-selected normal
walking speeds of a mixed-gender group of moderate knee
OA patients in previous studies (e.g., a mean of 1.13 m/s
and a range of 0.9–1.4 m/s [40]). BMI is also known to be
an influential factor in the study of gait biomechanics [42,
43], and both hip and knee frontal plane kinematics in
particular can be affected. There is, however, no consensus
on the exact nature of these effects, and further research
is needed to separate contributions of gender, BMI and
joint disease to changes in overall gait.

Conclusions
In conclusion, using discrete variables and a PCA ap-
proach, combined with an SVM classifier, the present
study was able to accurately classify male and female
subjects with and without knee OA as well as healthy
and OA gender-matched groups. Although no differ-
ences in walking kinematic discrete variables were found
in females and males with knee OA, in comparison to
gender-matched healthy controls, subtle kinematic dif-
ferences were still detectable by the non-linear multi-
variate classifiers. We therefore strongly recommended
that future investigations involving knee OA patients
and healthy controls be segmented according to gender
and age. We also postulate that the lack of consensus
amongst previous studies investigating the pathomecha-
nics of patients with knee OA could be the result of
mixed-gender cohorts.
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